《数据模型与决策课程大作业(5页).doc》由会员分享,可在线阅读,更多相关《数据模型与决策课程大作业(5页).doc(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、-数据模型与决策课程大作业-第 5 页数据模型与决策课程大作业以我国汽油消费量为因变量,乘用车销量、城镇化率和90#汽油吨价与城镇居民人均可支配收入的比值为自变量时行回归(数据为年度时间序列数据)。试根据得到部分输出结果,回答下列问题:1)“模型汇总表”中的R方和标准估计的误差是多少?2)写出此回归分析所对应的方程;3)将三个自变量对汽油消费量的影响程度进行说明;4)对回归分析结果进行分析和评价,指出其中存在的问题。1)“模型汇总表”中的R方和标准估计的误差是多少?答案:R方为0.9932=0.986 ;标准估计的误差为120910.147()2)写出此回归分析所对应的方程;答案:假设汽油消费
2、量为Y,乘用车销量为a,城镇化率为b,90#汽油吨价/城镇居民人均可支配收入为c,则回归方程为:3)将三个自变量对汽油消费量的影响程度进行说明;乘用车销量对汽油消费量相关系数只有0.00027,数值太小,几乎没有影响,但是城镇化率对汽油消费量相关系数是8649.895,具有明显正相关,当。乘用90#汽油吨价/城镇居民人均可支配收入相关系数为-198.692,呈明显负相关,即乘用90#汽油吨价/城镇居民人均可支配收入每增加1个单位,汽油消费量降低198.692个单位。a, b, c三个自变量的sig值为0.000、0.000、0.009,在显著性水平0.01情形下,乘用车消费量对汽油消费量的影响
3、显著为正。(4)对回归分析结果进行分析和评价,指出其中存在的问题。在学习完本课程之后,我们可以统计方法为特征的不确定性决策、以运筹方法为特征的策略的基本原理和一般方法为基础,结合抽样、参数估计、假设分析、回归分析等知识对我国汽油消费量影响因素进行了模拟回归,并运用软件计算出回归结果,故根据回归结果,对具体回归方程,回归准确性,自变量影响展开分析。Anova表中,sig值是t统计量对应的概率值,所以t和sig两者是等效的,sig要小于给定的显著性水平,越接近于0越好。F是检验方程显著性的统计量,是平均的回归平方和平均剩余平方和之比,越大越好。在图表中,回归模型统计值F=804.627,p值为0.
4、000,因此证明回归模型有统计学意义,表现回归极显著。即因变量与三个自变量之间存在线性关系。系数表中,除了常数项系数显著性水平大于0.05,不影响,其它项系数都是0.000,小于0.005,即每个回归系数均具有意义。当然,这其中也存在一定的问题:在模型设计中,乘用车销量为、城镇化率为、90#汽油吨价/城镇居民人均可支配收入为三个自变量的单位均不同,因此会造成自变量前面的回归系数不具有准确的宏观意义,因此需要对模型进行实现标准化,也就是引入系数,消除偏回归系数带来的数量单位影响。根据共线性统计量中的变量的容差t和方差膨胀因子(VIF),自变量间存在共性问题,容差和膨胀因子为倒数关系,容差越小,膨
5、胀因子越大,尤其是城镇化率VIF为11.213,说明共线性明显,可能原因是由于样本容量太小,也可能是城镇化之后乘用车销售量和、90#汽油吨价/城镇居民人均可支配收入本身就具有相关性。缺乏模型异方差检验。在多元回归模型中,由于数据质量原因、模型设定原因,异方差的存在会使回归系数估计结果误差较多,所以在建立模型分析的过程红要对异方差进行检验。数据模型与决策使我们学会使用科学的分析和决策,对经营管理活动实现合理化、精细化、科学化,从而避免了盲目的生产活动。通过数据预测、假设检验、公式、分析、验证等一系列的步骤,将数据结果逐一展现。为我们的学习和工作提供了一些非常有用、便捷的,处理问题的方法。附表:t分布表:df单尾检验的显著水平双尾检验的显著水平345678910111213