《教学设计75608(8页).doc》由会员分享,可在线阅读,更多相关《教学设计75608(8页).doc(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、-教学设计75608课题作者及工作单位张怀英 王店子学区中心校指导思想与理论依据从实例出发,通过小组讨论交流,经过比较归纳得出有理数加法法则。教材分析。“有理数的加法”是冀教版七年级数学上册第二章有理数的第五节内容,本节内容安排两个课时,本课时是本节内容的第一课时,本课设计主要是通过球赛中净胜球数的实例来明确有理数加法的意义,引入有理数加法的法则,为今后学习“有理数的减法”做铺垫。学情分析王店子学区中心校,学生都来自农村,学生的基础及学习习惯是比较差。学生对新的课堂教学方法不是很适应;不过,在新的教学理念的指导下,旧的教学方法和学习方法正在逐步淡化,课堂主要培养学生的观察,比较,归纳及自主探索
2、和合作交流能力。现在,班级中正在逐渐形成合作交流和勇于探究的良好学风。 教学目标 1知识与技能(1)通过足球赛中的净胜球数,使学生掌握有理数加法法则,并能运用法则进行计算;(2)在有理数加法法则的教学过程中,注意培养学生的运算能力通过观察,比较,归纳等得出有理数加法法则认识到通过师生合作交流,学生主动叁与探索获得数学知识,从而提高学生学习数学的积极性。教学重点和难点重点:会用有理数加法法则进行运算难点:异号两数相加的法则教学流程示意一问题与情境二、师生共同探究有理数加法法则三、应用举例 变式练习四、小结1本节课你学到了什么?2本节课你有什么感受?(由学生自己小结)五练习设计教学过程(教学过程的
3、表述不必详细到将教师、学生的所有对话、活动逐字记录,但是应该把主要环节的实施过程很清楚地再现。)教学环节教师活动预设学生行为设计意图一问题与情境我们已经熟悉正数的运算,然而实际问题中做加法运算的数有可能超出正数范围。例如,足球循环赛中,通常把进球数记为正数,失球数记为负数,它们的和叫作净胜球数。题目:红队进4个球,失2个球;蓝队进1个球,失1个球。于是红队的净胜球为4+(-2),蓝队的净胜球为1+(-1)。这里用到正数与负数的加法。(二)、师生共同探究有理数加法法则前面我们学习了有关有理数的一些基础知识,从今天起开始学习有理数的运算这节课我们来研究两个有理数的加法两个有理数相加,有多少种不同的
4、情形?为此,我们来看一个大家熟悉的实际问题:足球比赛中赢球个数与输球个数是相反意义的量若我们规定赢球为“正”,输球为“负”,打平为“0”比如,赢3球记为+3,输1球记为-1学校足球队在一场比赛中的胜负可能有以下各种不同的情形:(1)上半场赢了3球,下半场赢了1球,那么全场共赢了4球也就是(+3)+(+1)=+4 (2)上半场输了2球,下半场输了1球,那么全场共输了3球也就是(-2)+(-1)=-3 现在,请同学们说出其他可能的情形答:上半场赢了3球,下半场输了2球,全场赢了1球,也就是(+3)+(-2)=+1; 上半场输了3球,下半场赢了2球,全场输了1球,也就是(-3)+(+2)=-1; 上
5、半场赢了3球下半场不输不赢,全场仍赢3球,也就是(+3)+0=+3; 上半场输了2球,下半场两队都没有进球,全场仍输2球,也就是(-2)+0=-2;上半场打平,下半场也打平,全场仍是平局,也就是0+0=0 上面我们列出了两个有理数相加的7种不同情形,并根据它们的具体意义得出了它们相加的和但是,要计算两个有理数相加所得的和,我们总不能一直用这种方法现在请同学们仔细观察比较这7个算式,你能从中发现有理数加法的运算法则吗?也就是结果的符号怎么定?绝对值怎么算?这里,先让学生思考,师生交流,再由学生自己归纳出有理数加法法则:1同号两数相加,取相同的符号,并把绝对值相加;2绝对值不相等的异号两数相加,取
6、绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;3一个数同0相加,仍得这个数(三)、应用举例 变式练习例1 口答下列算式的结果(1)(+4)+(+3); (2)(-4)+(-3); (3)(+4)+(-3); (4)(+3)+(-4);(5)(+4)+(-4); (6)(-3)+0; (7)0+(+2); (8)0+0学生逐题口答后,师生共同得出进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值例2解:(1)(-3)+(-9) (两个
7、加数同号,用加法法则的第2条计算)=-(3+9) (和取负号,把绝对值相加)=-12(2)(-4.7)+3.9 (两个加数异号,用加法法则的第2条计算)=-(4.7-3.9) (和取负号,把大的绝对值减去小的绝对值)(四)、小结1本节课你学到了什么?2本节课你有什么感受?(由学生自己小结)(五)练习设计1计算:(1)(-10)+(+6); (2)(+12)+(-4); (3)(-5)+(-7); (4)(+6)+(+9);(5)67+(-73); (6)(-84)+(-59); (7)33+48; (8)(-56)+372计算:(1)(-0.9)+(-2.7); (2)3.8+(-8.4);
8、(3)(-0.5)+3;(4)3.29+1.78; (5)7+(-3.04); (6)(-2.9)+(-0.31);(7)(-9.18)+6.18; (8)4.23+(-6.77); (9)(-0.78)+04用“”或“”号填空:(1)如果a0,b0,那么a+b _0;(2)如果a0,b0,那么a+b _0;(3)如果a0,b0,|a|b|,那么a+b _0;(4)如果a0,b0,|a|b|,那么a+b _0板书设计(需要一直留在黑板上主板书)1同号两数相加,取相同的符号,并把绝对值相加;2绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数
9、相加得0;3一个数同0相加,仍得这个数教学反思(教学反思的撰写应避免对教学设计思路、指导思想的再次重复。教学反思可以从以下几个方面思考,不必面面俱到):l 反思在备课过程中对教材内容、教学理论、学习方法的认知变化。l 反思教学设计的落实情况,学生在教学过程中的问题,出现问题的原因是什么,如何解决等,避免空谈出现的问题而不思考出现的原因,也不思考解决方案。l 对教学设计中精心设计的教学环节,尤其是对以前教学方式进行的改进,通过设计教学反馈,实际的改进效果如何。l 如果让你重新上这节课,你会怎样上?有什么新想法吗?或当时听课的老师或者专家对你这节课有什么评价?对你有什么启发?有理数的加法”的教学,
10、可以有多种不同的设计方案大体上可以分为两类:一类是较快地由教师给出法则,用较多的时间(30分钟以上)组织学生练习,以求熟练地掌握法则;另一类是适当加强法则的形成过程,从而在此过程中着力培养学生的观察、比较、归纳能力,相应地适当压缩应用法则的练习,如本教学设计现在,试比较这两类教学设计的得失利弊第一种方案,教学的重点偏重于让学生通过练习,熟悉法则的应用,这种教法近期效果较好第二种方案,注重引导学生参与探索、归纳有理数加法法则的过程,主动获取知识这样,学生在这节课上不仅学懂了法则,而且能感知到研究数学问题的一些基本方法这种方案减少了应用法则进行计算的练习,所以学生掌握法则的熟练程度可能稍差,这是教学中应当注意的问题但是,在后续的教学中学生将千万次应用“有理数加法法则”进行计算,故这种缺陷是可以得到弥补的第一种方案削弱了得出结论的“过程”,失去了培养学生观察、比较、归纳能力的一次机会权衡利弊,我主张采用第二种教学方法。-第 8 页教学基本信息