《四川省成都市郫县德源中学2021年高二数学文上学期期末试题含解析.pdf》由会员分享,可在线阅读,更多相关《四川省成都市郫县德源中学2021年高二数学文上学期期末试题含解析.pdf(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、Word 文档下载后(可任意编辑)四川省成都市郫县德源中学四川省成都市郫县德源中学 20212021 年高二数学文上学期期末试年高二数学文上学期期末试题含解析题含解析一、一、 选择题:本大题共选择题:本大题共 1010 小题,每小题小题,每小题 5 5 分,共分,共 5050 分。在每小题给出的四个选项中,只有分。在每小题给出的四个选项中,只有是一个符合题目要求的是一个符合题目要求的1. 执行如图所示的程序框图,则输出的s值是()ACBD4参考答案:参考答案:D2. 若已知 A(1,1,1),B(3,3,3),则线段 AB 的长为()A4B2C4D3参考答案:参考答案:A【考点】空间两点间的距
2、离公式【分析】利用两点之间的距离求得AB 的长【解答】解:|AB|=4故选 A3. 抛物线的焦点坐标为()A、B、C、D、参考答案:参考答案:A4.若复数满足(其中 i 为虚数单位),则的共轭复数为A. B. C. D.参考答案:参考答案:A略5. 复数则A.1B.C.D.参考答案:参考答案:B本题主要考查复数的四则运算与复数的模., 则6. 过双曲线的右顶点作斜率为的直线,该直线与双曲线的两条渐近线的交点分别为若=则双曲线的离心率是 ( )A B C D参考答案:参考答案:c略7. 对于平面直角坐标系内的任意两点,定义它们之间的一种“距离”:给出下列三个命题:Word 文档下载后(可任意编辑
3、)若点 C 在线段 AB上,则;在中,若C=90,则;在中,其中真命题的个数为( )A0B1C2D3参考答案:参考答案:B8. 已知圆的圆心为 C,点 P是直线上的点,若圆 C上存在点Q使,则实数 m的取值范围是()A.B.C.D.参考答案:参考答案:C【详解】如图所示:过作圆的切线,切点为,则,即有解,则到直线 的距离,解得,故选:【点睛】本题考查了直线与圆的位置关系,属中档题9.已知与之间的一组数据如下表,根据表中提供的数据,求出关于的线性回归方程为, 那么的值为()A. 0.5 B. 0.6C. 0.7D. 0.8参考答案:参考答案:C10. 极坐标方程 ?cos表示的曲线是( )A双曲
4、线B椭圆C抛物线D圆参考答案:参考答案:D二、二、 填空题填空题: :本大题共本大题共 7 7 小题小题, ,每小题每小题 4 4 分分, ,共共 2828分分11. 经过两点 A(,1),B()的椭圆的标准方程为_。参考答案:参考答案:略Word 文档下载后(可任意编辑)12. 已知,则。参考答案:参考答案:13. 已知,则的最小值是_。参考答案:参考答案:14. 过抛物线 y=上一点 A(1,0)的切线的倾斜角为 45则=_.参考答案:参考答案:1略15. 商家通常依据“乐观系数准则”确定商品销售价格,及根据商品的最低销售限价a,最高销售限价b(ba)以及常数 x(0 x1)确定实际销售价
5、格 c=a+x(ba),这里,x 被称为乐观系数经验表明,最佳乐观系数 x 恰好使得(ca)是(bc)和(ba)的等比中项,据此可得,最佳乐观系数 x 的值等于参考答案:参考答案:【考点】数列的应用【分析】根据题设条件,由(ca)是(bc)和(ba)的等比中项,知x(ba)2=(ba)2x(ba)2,由此能求出最佳乐观系数x 的值【解答】解:ca=x(ba),bc=(ba)x(ba),(ca)是(bc)和(ba)的等比中项,x(ba)2=(ba)2x(ba)2,x2+x1=0,解得,0 x1,故答案为:16. 如果直线是异面直线,点 A、C 在直线上,点 B、D在直线上,那么直线 AB和CD
6、的位置关系是。参考答案:参考答案:异面17. 由代数式的乘法法则类比推导向量的数量积的运算法则:“mn=nm”类比得到“ ? = ? ”;“(m+n)t=mt+nt”类比得到“( + )? = ? + ? ”;“t0,mt=nt?m=n”类比得到“ 0, ? = ? ? = ”;“|m?n|=|m|?|n|”类比得到“| ? |=| |?| |”以上类比得到的正确结论的序号是_(写出所有正确结论的序号)参考答案:参考答案:三、三、 解答题:本大题共解答题:本大题共 5 5 小题,共小题,共 7272分。解答应写出文字说明,证明过程或演算步骤分。解答应写出文字说明,证明过程或演算步骤18. 已知
7、函数在上是单调递减函数,方程无实根,若“或”为真,“且”为假,求的取值范围。参考答案:参考答案:略19. (本小题满分 12分)求以椭圆的焦点为焦点,且过点的双曲线的标准方程.Word 文档下载后(可任意编辑)参考答案:参考答案:由椭圆的标准方程可知,椭圆的焦点在轴上设双曲线的标准方程为-2分根据题意,-6分解得或(不合题意舍去)-10分双曲线的标准方程为-12分20. 如图:已知圆上的弧,过 C 点的圆的切线与 BA的延长线交于E 点,证明:()=。()参考答案:参考答案:解: ()因为,所以.又因为与圆相切于点,故所以.5 分()因为,所以,故.即.10 分21. 已知数列an是等比数列,
8、是和的等差中项.(1)求数列an的前 n项和 Sn;(2)设,求数列的前 n项和 Tn.参考答案:参考答案:()设数列an的公比为 q,因为,所以,1分因为是和的等差中项,所以2分即,化简得因为公比,所以4分所以,所以数列an的前 n项和=6分()因为,所以所以8分Word 文档下载后(可任意编辑)则,9分- 得=11分所以12分22. (12分)已知数列an,bn,cn满足(an+1an)(bn+1bn)=cn(nN*)(1)若bn为等差数列,b1=c1=2,an=2n,求数列bn的前 n项和 Sn;(2)设 cn=2n+n,an=当 b1=1时,求数列bn的通项公式参考答案:参考答案:【考
9、点】数列递推式;数列的求和【分析】(1)通过在(an+1an)(bn+1bn)=cn中令 n=1,进而计算即得结论;(2)通过 an+1an=(1)n+1易知需要对 n的奇偶性分情况讨论,利用叠加法计算即得结论【解答】解:(1)记数列bn的公差为 d,依题意,(a2a1)(b2b1)=c1,(42)d=2,即 d=1,bn=2+(n1)=n+1,Sn=;(2)an=,an+1an=(1)n+1,cn=2n+n,bn+1bn=(1)n+1?(2n+n),bnbn1=(1)n?(2n1+n1)(n2),bn1bn2=(1)n1?(2n2+n2),b3b2=(1)3?(22+2),b2b1=(1)2?(21+1),当 n=2k时,以上各式相加得:bnb1=(222+232n2+2n1)+12+3(n2)+(n1)=+=+,bn=b1+=+;当 n=2k1时,bn=bn+1(1)n+1(2n+n)=+2nn=+;综上所述,bn=【点评】本题考查数列的通项及前 n项和,考查分类讨论的思想,注意解题方法的积累,属于中档题