《2014人教版九年级数学221一元二次方程(一)PPT课件.ppt》由会员分享,可在线阅读,更多相关《2014人教版九年级数学221一元二次方程(一)PPT课件.ppt(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、一一.复习复习1.什么叫方程?我们学过那些方程?什么叫方程?我们学过那些方程?2.什么叫一元一次方程?什么叫一元一次方程?3.什么叫分式方程?什么叫分式方程? ?问题问题(1)(1)要设计一座高要设计一座高2m的人体雕像的人体雕像,使雕像的使雕像的上部上部(腰以上腰以上)与下部与下部(腰以下腰以下)的高度比的高度比,等于下部等于下部与全部的高度比与全部的高度比,求雕像的下部应设计为高多少求雕像的下部应设计为高多少米米?ACB 雕像上部的高度雕像上部的高度AC,下部的高度下部的高度BC应有如下关系应有如下关系:分析分析:2BCBCAC即即ACBC22设雕像下部高设雕像下部高xm,于是得方程于是得
2、方程)2(22xx整理得整理得0422 xxx2-x ?问题问题(2) (2) 有一块矩形铁皮有一块矩形铁皮, ,长长100100, ,宽宽5050, ,在在它的四角各切去一个正方形它的四角各切去一个正方形, ,然后将四周突出部然后将四周突出部分折起分折起, ,就能制作一个无盖方盒就能制作一个无盖方盒, ,如果要制作的方如果要制作的方盒的底面积为盒的底面积为36003600平方厘米平方厘米, ,那么铁皮各角应切那么铁皮各角应切去多大的正方形去多大的正方形? ?1001005050 x x36003600分析分析:设切去的正方形的边长为设切去的正方形的边长为xcm,则盒底的长为则盒底的长为 ,宽
3、宽为为 .3600)250)(2100(xx(100-2x)cm(50-2x)cm根据方盒的底面积为根据方盒的底面积为3600cm2,得得0350752xx即即问题问题(3) (3) 要组织一次排球邀请赛要组织一次排球邀请赛, ,参赛的每两队参赛的每两队之间都要比赛一场之间都要比赛一场, ,根据场地和时间等条件根据场地和时间等条件, ,赛程赛程计划安排计划安排7 7天天, ,每天安排每天安排4 4场比赛场比赛, ,比赛组织者应邀比赛组织者应邀请多少个队参加比赛请多少个队参加比赛? ?分析分析:全部比赛共全部比赛共 47=28场场设应邀请设应邀请x个队参赛个队参赛,每个队要与其他每个队要与其他
4、个队个队各赛各赛1场场, 由于甲队对乙队的比赛和乙队对甲队的比赛由于甲队对乙队的比赛和乙队对甲队的比赛是同一场比赛是同一场比赛,所以全部比赛共所以全部比赛共 场场.28) 1(21xx562 xx即即(x-1)0422 xx0350752xx562 xx 这三个方程都不是一元一次方程这三个方程都不是一元一次方程.那么这三个那么这三个方程与一元一次方程的区别在哪里?它们有什么方程与一元一次方程的区别在哪里?它们有什么共同特点呢?共同特点呢?特点特点: 都是整式方程都是整式方程;只含一个未知数只含一个未知数;未知数的最高次数是未知数的最高次数是2.一元二次方程的概念一元二次方程的概念 像这样的等号
5、两边都是整式像这样的等号两边都是整式, , 只含有只含有一个未知数一个未知数( (一元一元) ),并且未知数的最,并且未知数的最高次数是高次数是2(2(二次二次) )的方程叫做的方程叫做一元二次一元二次方程方程(quadratic equation in one unknown)(quadratic equation in one unknown) 21109000 xx 是一元二次方程吗?一元二次方程的一般形式一元二次方程的一般形式20axbx c 20axbx c 为什么要限制为什么要限制想一想想一想 a x 2 + b x + c = 0(a 0)二次项系数二次项系数一次项系数一次项系数
6、常数项常数项05212 xx)(013422 yx)(032cbxax)(0214 )()(xx0152aa)(1262 )(m)(1)(4)(6二次项、二次项、二次项二次项系数、系数、一次项、一次项、一次项一次项系数、系数、常数项常数项都是包都是包括符号括符号的的 ) 2( 5) 1(3xxx例题讲解 方程(方程(2a4)x2 2bx+a=0, 在什么条在什么条件下此方程为一元二次方程?在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一次方程?件下此方程为一元一次方程? 解:当解:当a2a2时是一元二次方程;当时是一元二次方程;当a a2 2,b0b0时是一元一次方程;时是一元一次
7、方程;例、若关于的方程例、若关于的方程()()2 2是一是一元二次方程,求的取值范围。元二次方程,求的取值范围。练习练习:若关于的方程若关于的方程22(1)(1)10kxkx 是一元二次方程,求的取值范围。是一元二次方程,求的取值范围。1.将下列方程化成一元二次方程的一般形式,将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数,一次项系数及常数并写出其中的二次项系数,一次项系数及常数项:项: 221 514 2 481xxx ;25410.xx xx415 12一般式:一般式:二次项系数为,一次项系数二次项系数为,一次项系数4,常数项,常数项1. 814 2 2x一般式:一般式:24
8、810.x 二次项系数为二次项系数为4,一次项系数,一次项系数0,常数项,常数项81.练练 习习 25243xx 381234xxx一般式:一般式:二次项系数为二次项系数为4,一次项系数,一次项系数8,常数项,常数项25.248250.xx一般式:一般式:二次项系数为二次项系数为3,一次项系数,一次项系数7,常数项,常数项1.23710.xx 3 4225 432183x xxxx2.根据下列问题,列出关于根据下列问题,列出关于x的方程,并将其化的方程,并将其化成一元二次方程的一般形式:成一元二次方程的一般形式:(1)4个完全相同的正方形的面积之和是个完全相同的正方形的面积之和是25,求正方形
9、的边长求正方形的边长x;解解:设其边长为:设其边长为x,则面积为,则面积为x24x2=2502542x(2)一个矩形的长比宽多)一个矩形的长比宽多2,面积是,面积是100,求矩形的长求矩形的长x; x(x2)=100.x22x100=0.解:设长为解:设长为x,则宽(,则宽(x2)(3)把长为)把长为1的木条分成两段,使较短一段的长与的木条分成两段,使较短一段的长与全长的积,等于较长一段的长的平方,求较短一全长的积,等于较长一段的长的平方,求较短一段的长段的长x; x1 1 = (1x) 2X23x1=0.解:设其中的较短一段为解:设其中的较短一段为x,则另较长,则另较长一段为(一段为(1x)
10、已知关于已知关于x的一元二次方程的一元二次方程(m1)x23x-5m40有一根为有一根为2,求求m.分析分析:一根为一根为2,即,即x2,只需把只需把x2代入原方程代入原方程.一元二次方程解的概念一元二次方程解的概念v方程解的定义是怎样的呢方程解的定义是怎样的呢? 能使方程左右两边相等的未知数的值就叫方程的能使方程左右两边相等的未知数的值就叫方程的解解. .一元二次方程的一元二次方程的解解也叫做一元二次方程也叫做一元二次方程根根. .0456) 1(4mm6m例题:已知x=2是关于x的方程的一个根,求2a-1的值。23202xa23202xa解:把x=2代入中得2a=62a-1=51.下列方程
11、中下列方程中,无论无论a为何值为何值,总是关于总是关于x的一元的一元二次方程的是二次方程的是( )A.(2x-1)(x2+3)=2x2-a B.ax2+2x+4=0C.ax2+x=x2-1 D.(a2+1)x2=02.当当m为何值时为何值时,方程方程 是关于是关于x的一元二次方程的一元二次方程.0527) 1(24mxxmmD ? 3. 将下列方程化为一般形式,并分别将下列方程化为一般形式,并分别指出它们的二次项、一次项和常数项及指出它们的二次项、一次项和常数项及它们的系数:它们的系数: yy268) 3)(2(xx2) 3()32)(32 (xxx练习:练习:1 1、已知、已知x=1x=1是关于是关于x x的一元二次的一元二次方程方程2x+kx-1=02x+kx-1=0的一个根,求的一个根,求k k的值的值2 2、已知、已知x=0 x=0是关于是关于x x的一元二次的一元二次方程方程(a-1)x+x+a-1=0(a-1)x+x+a-1=0的一个根,的一个根,求求a a的值的值1.一元二次方程的概念一元二次方程的概念 只含有一个未知数,并且未知数的最高次数是只含有一个未知数,并且未知数的最高次数是2的整的整式方程叫做一元二次方程。式方程叫做一元二次方程。2、一元二次方程的一般形式、一元二次方程的一般形式 20axbx c 20axbxc 作业:P4 1、2、4、5、6、7