《点到直线的距离3.ppt》由会员分享,可在线阅读,更多相关《点到直线的距离3.ppt(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、X文化基础二组文化基础二组 罗晓文罗晓文复习提问1、平面上点与直线的位置关系怎样?2、何谓点到直线的距离?答案:1.有两种,一种是点在直线上,另一种是点在直线外.2.过点作直线的垂线, 点到垂足的线段长.问题问题1设设A0,B0,这时直线,这时直线l l与与x轴、轴、y轴都相交,过轴都相交,过P作作x轴的轴的平行线,交于平行线,交于l l点点R(x1,y0);作;作y轴的平行线,交于轴的平行线,交于l l点点S(x0,y2)由由1002A0A0 xByCxByC 得得0012ByCAxCxyAB,0001PSAxByCyyB222200ABRSPRPSAxABByC由三角的面积公式得:由三角的
2、面积公式得: d RSPRPS0022AxByCdAB特例:当特例:当A=0或或B=0时,也适用。时,也适用。 0001PRAxByCxxAPR(x1,y0)S(x0,y2)y0 x|0ACxd|0BCyd当当AB=0(A,B不全为不全为0)(1)Ax+C=0XYO),(00yxP用公式验证结果相同用公式验证结果相同(2)By+C=0用公式验证结果相同用公式验证结果相同O),(00yxPXYOyxl:Ax+By+C=0P(x0,y0)2200BACByAxd 1.此公式的作用是求点到直线的距离;此公式的作用是求点到直线的距离;2.此公式是在此公式是在A 0 、B0的前提下推导的;的前提下推导的
3、;3.如果如果A=0或或B=0,此公式也成立;,此公式也成立;4.用此公式时直线方程要先化成一般式。用此公式时直线方程要先化成一般式。.02),1, 1(;01),3 ,2(;0),2, 1(;3774),0,0(:0134),0,2(;043),3 ,0(ypxPyxPyxPyxPyxP例例1、求下列各点到相应直线的距离、求下列各点到相应直线的距离5125965653722311.22)2 , 1(. 2的直线的方程且与原点的距离等于求过点例A 解解:设所求直线的方程为设所求直线的方程为y-2=k(x+1) 即 kx-y+2+k=0 由题意得221|200|2kkk2+8k+7=0 11k解
4、得72k所求直线的方程为x+y-1=0或7x+y+5=0.)2 , 1(A2-12222例例2的变式练习的变式练习求过点A(-1,2)且与原点的距离等于 (1).距离改为1;(2).距离改为 ;(3).距离改为3(大于 ).想一想?在练习本上画图形做.55例2的变式练习(1).距离改为距离改为1,x=-14(y-2)=-3(x+1)2-1或或x=-1(易漏掉易漏掉)2 , 1(A则用上述方法得则用上述方法得4(y-2)=3(x+1)例2的变式练习(2).距离改为距离改为 ,2(y-2)=x+12-1555则得则得2(y-2)=x+1;)2 , 1(A(3).距离改为3(大于 ),则23-1-3
5、5无解。)2 , 1(A例2的变式练习例例3 求平行线求平行线2x-7y+8=0与与2x-7y-6=0的距离。的距离。Oyxl2: 2x-7y-6=0l1:2x-7y+8=0 两平行线间的两平行线间的距离处处相等距离处处相等在在l2上任取一点,例如上任取一点,例如P(3,0)P到到l1的距离等于的距离等于l1与与l2的距离的距离5353145314)7(28073222 d直线到直线的距离转化为点到直线的距离直线到直线的距离转化为点到直线的距离P(3,0)练习练习3.求下列两条平行线的距离:求下列两条平行线的距离:(1) L1:2x+3y-8=0 , L2:2x+3y+18=0(2) L1:
6、3x+4y=10 , L2: 3x+4y-5=0解解 :点点P(4,0)在在L1上上 132132632|180342|22d则,)25, 0(:1LP在点解143|525403|22d则132132632| ) 8(18|22d143| )10(5|22dOyxl2l1P任意两条平行直线都可以写成如任意两条平行直线都可以写成如下形式:下形式:l1 :Ax+By+C1=0l2 :Ax+By+C2=02212BACCd22200|BACByAxd的距离到直线则点上在直线设2100),(LPLyxP)(001ByAxC又直线的方程直线的方程应化为一般应化为一般式!式!1 1. .今天我们学习了点到
7、直线的距离公式今天我们学习了点到直线的距离公式, ,要要熟记公式的结构熟记公式的结构. .应用时要注意将直线的方应用时要注意将直线的方程化为一般式程化为一般式. .2. 2.当当A=0A=0或或B=0(B=0(直线与坐标轴垂直直线与坐标轴垂直) )时,仍时,仍然可用公式,这说明了特殊与一般的关系然可用公式,这说明了特殊与一般的关系. .3. 3.例例2 2的变式练习的变式练习, ,用图形解释运算结果用图形解释运算结果, ,又又一次让我们体会了数学与形式结合的思想一次让我们体会了数学与形式结合的思想. .作业作业1.1.阅读阅读P P1717 P P1818, ,有关内容有关内容. .2.2.书面作业书面作业: : P P1919 第第5 5题题, ,第第6 6题题. .