《有理数基本概念(经典绝版)(5页).doc》由会员分享,可在线阅读,更多相关《有理数基本概念(经典绝版)(5页).doc(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、-绵阳中学英才学校四初一期末复习之有理数 有理数概念整理 班级: 姓名: (一)有理数:(1)整数与分数统称 按定义分类: 按符号分类: 注:正数和零统称为 ;负数和零统称为 ;正整数和零统称为 ;负整数和零统称为 .注意: 都大于零, 都小于零.“0”即不是 ,也不是 .(3)用正数、负数表示相反意义的量:如果用正数表示某种意义的量,那么负数表示其 意义的量,如果负数表示某种意义的量,则正数表示其 意义的量.如:若-5米表示向东走5米,则+3米表示向 走3米; 若+6米表示上升6米,则-2米表示 ;+表示零上,-则表示 .(4)有理数“0”的作用:作用举例表示数的性质0是自然数、是有理数、是
2、整数表示没有3个苹果用+3表示,没有苹果用0表示表示某种状态表示冰点表示正数与负数的界点0非正非负,是一个中性数(二)数轴 (1)概念:规定了 、 和 的直线注: 、 、 称为数轴的三要素,三者缺一不可. (2)数轴的画法及常见错误分析画一条水平的 ;在这条直线上适当位置取一实心点作为 :确定向右的方向为 ,用 表示;数轴画法的常见错误(3)有理数与数轴的关系 一切有理数都可以用数轴上的 表示出来.在数轴上,右边的点所对应的数总比左边的点所对应的数 ,正数都大于 ,负数都小于 ,正数大于一切负数.注意:数轴上的点不都是有理数,如.(三)相反数(1)相反数:只有 的两个数互称为相反数特别地,0的
3、相反数是 ;若,则,反之亦然 .(2)相反数的性质:代数意义:只有 的两个数叫做互为相反数,特别地,O的相反数是0相反数必须 出现,不能单独存在例如+5和 互为相反数,或者说+5是 的相反数,5是 的相反数,而单独的一个数不能说是 另外,定义中的“只有”指除 以外,两个数 ,注意应与“只要符号不同”区分开例如+3与3互为相反数,而+3与2虽然 不同,但它们不是相反数几何意义:一对相反数在数轴上应分别位于 两侧,并且到原点的 相等这两点是关于 对称的求任意一个数的相反数,只要在这个数的前面添上“ ”号即可一般地,数a的相反数是 ;这里以a表示任意一个数,可以为 、 、负数,也可以是任意一个代数式
4、注意a不一定是 注意:当a0时,a 0(正数的相反数是 数); 当a=0时,a O(0的相反数是 ); 当a0时,a O (负数的相反数是 )互为相反数的两个数的和为 ,即若a与b互为 ,则a+b=0,反之,若a+b=O,则a与b互为 多重符号的化简:一个正数前面不管有多少个“”号,都可以全部 ;一个正数前面有 个“”号,也可以把“”号全部去掉;一个正数前面有 个“”号,则化简后只保留一个“”号,即“ 负 正”(其中“奇偶”是指正数前面的“ ”号的个数的 ,“负正”是指化简的最后结果的 .(四)绝对值(1)绝对值的代数意义及几何意义 绝对值的代数意义:一个正数的绝对值是 ;一个负数的绝对值是它
5、的 ;0的绝对值是 . 绝对值的几何意义:一个数a的绝对值就是数轴上表示数a的 与 的距离.数a的绝对值记作 .注意:取绝对值也是一种 ,这个 符号是“ ”,求一个数的绝对值,就是根据性质 绝对值符号.绝对值具有 性,取绝对值的结果总是 .任何一个有理数都是由 部分组成: 和它的 ,如:5,符号是 ,绝对值是 .(2)字母a的绝对值的分类或或(3)利用绝对值比较两个负有理数的大小规则:两个负数,绝对值大的反而 .步骤:计算两个负数的 .比较这两个 的大小.写出正确的判断结果.如果若干个非负数的和为0,那么这若干个非负数都必为 .例如:若知识点二:有理数运算(一)有理数比较大小1、 2、数形结合
6、利用数轴比较有理数大小。(二)有理数的加减法(1)有理数加法法则同号两数相加,取相同的 ,并把绝对值 .绝对值不相等的异号两数相加,取 的加数的符号,并用较大的 减去较小的 .一个数同0相加,仍得 .(2)有理数加法的运算步骤法则是运算的依据,根据有理数加法的运算法则,可以得到加法的运算步骤:确定和的 ;求和的绝对值,即确定是两个加数的绝对值的 .(3)有理数加法的运算律两个加数相加,交换加数的位置, 不变.即a+b=b+a(加法 律)三个数相加,先把前两个数相加,或者先把后两个数相加, 不变.即 (a+b)+c=a+(b+c)(加法 律)(4)有理数加法的运算技巧分数与小数均有时,应先化为
7、形式.带分数可分为 与 两部分参与运算.多个加数相加时,若有互为相反数的两个数,可先结合 得 若有可以凑整的数,即相加得整数时,可先结合 .若有同分母的分数或易通分的分数,应先结合在一起. 相同的数可以先结合在一起.(5)有理数减法法则减去一个数,等于 ,即a-b=a+( )(6)有理数减法的运算步骤把减号变为加号(改变运算符号)把减数变为它的相反数(改变性质符号)把减法转化为加法,按照加法运算的步骤进行运算.(7)有理数加减混合运算的步骤把算式中的减法转化为加法;省略加号与括号;利用运算律及技巧简便计算,求出结果.注意:根据有理数减法法则,减去一个数等于加上 ,因此加减混合运算可以依据上述法
8、则转变为只有 的运算,即变为求几个正数,负数和0的和,这个和称为代数和.为了书写简便,可以把加号与每个加数外的括号均省略,写成省略加号和的形式,(三)有理数的乘除法(1)有理数乘法法则两数相乘,同号得 ,异号得 ,并把 相乘.任何数同 相乘,都得0.(2)有理数乘法的运算律两个数相乘,交换因数的位置,积相等.即ab= (乘法结合律)三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.即 abc= (乘法结合律)一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加. 即 a(b+c)= (乘法分配律)(3)有理数乘法法则的推广几个不等于0的数相乘,积的符号由 的个数决定,当
9、 的个数是偶数时,积为 ; 的个数是奇数时,积为 .几个数相乘,如果有一个因数为0,则积为 .在进行乘法运算时,若有带分数,应先化为 ,便于约分;若有小数及分数,一般先将小数化为 ,或凑整计算;利用乘法分配律及其逆用,也可简化计算.(4) 有理数除法法则:除以一个不等于0的数,等于乘这个数的 。即ab=a (b0)两数相除,同号得 ,异号得 ,并把绝对值 , 除以任何一个不等于0的数,都得0.(5)倒数及有理数除法乘积为 的两个数互为倒数。倒数是 出现的,单独一个数不能称为倒数;互为倒数的两个数的乘积一定 ; 没有倒数;求一个非零有理数的倒数,只要把它的分子和分母 即可(正整数可以看作分母为1
10、的分数)。注意: 互为倒数,则;互为负倒数,则。反之亦然.有理数除法的运算步骤:首先确定商的 ,然后再求出商的绝对值.(四)有理数的乘方 (1)概念:求个相同因数的积的运算,叫做 , 的结果叫做 ,在中,叫做 ,叫做 .(2)含义: 中,为底数,为指数,即表示的个数,表示有 相乘.例如:表示33333,(-3)表示(-3)(-3)(-3)(-3)(-3),特别注意负数及分数的乘方,应把底数加上括号. 如(-2)表示 相乘,而-2则表示7个2相乘的积的 。当n为奇数时,(-a)= ;而当n为偶数时,(-a)= .注意: 负数的奇次幂是 ,负数的 幂是正数。正数的任何次幂都是 ,0的任何次幂都是
11、,任何不为0的数的0次幂都是 .(3)“奇负偶正”口诀的应用口诀“奇负偶正”在多处知识点中均提到过,它具体的应用有如下几点:多重负号的化简,这里奇偶指的是“”号的个数,例如:(3)= ,+(3)= .有理数乘法,当多个非零因数相乘时,这里奇偶指的是负因数的个数,正负指结果中积的符号,例如:(3)(2)(6)= ,而(3)(2)6= .有理数乘方,这里奇偶指的是指数,当底数为负数时,指数为奇数,则幂为 ;指数为偶数,则幂为 ,例如:(3)= ,(3)= .(4)有理数混合运算的运算顺序:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行
12、.加减法为一级运算,乘除法为二级运算,乘方及开方(以后学)称为三级运算.同级运算,按从左到右的顺序进行;不同级运算,应先算 级运算,然后 级,最后 级;如果有括号,先算括号里的,有多重括号时,应先算_括号里的,再算 括号里的,最后算 括号里的. 以上运算顺序可以简记为:“从左到右,从高(级)到低(级),从小(括号)到大(括号)”.(五)近似数、和科学记数法(1)科学记数法:把一个大于10的数表示成 的形式(其中,是整数),此种记数法叫做科学记数法.例如:200000=就是科学记数法表示数的形式. 又如:10200000= 也是. (2)科学计数法a和n的确定:a就是把原数的小数点移动过到左边第1个不是0的数字后面所到的数;n的值比原数的整数位少1.-第 4 页-