数值分析复习题要答案(13页).doc

上传人:1595****071 文档编号:36341954 上传时间:2022-08-26 格式:DOC 页数:13 大小:506KB
返回 下载 相关 举报
数值分析复习题要答案(13页).doc_第1页
第1页 / 共13页
数值分析复习题要答案(13页).doc_第2页
第2页 / 共13页
点击查看更多>>
资源描述

《数值分析复习题要答案(13页).doc》由会员分享,可在线阅读,更多相关《数值分析复习题要答案(13页).doc(13页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、-第一章1、ln20.69314718,精确到 103 的近似值是多少?解 精确到 1030.001,即绝对误差限是 e0.05,故至少要保留小数点后三位才可以。ln20.693。2、设均具有5位有效数字,试估计由这些数据计算,的绝对误差限解:记则有所以 3、一个园柱体的工件,直径d为10.250.25mm,高h为40.001.00mm,则它的体积V的近似值、误差和相对误差为多少。解:第二章:1、分别利用下面四个点的Lagrange插值多项式和Newton插值多项式N3(x),计算L3(0.5)及N3(-0.5)x2101f(x)1102解:(1)先求Lagrange插值多项式 (1分),(2

2、分) (2分)(2分) (2分)(1分)所以 (1分)(2)再求Newton插值多项式列均差表如下:所以(2分) (1分)2、求过下面四个点的Lagrange插值多项式L3(x)和Newton插值多项式N3(x)。x2101f(x)2111)解:(1)L3(x)=lo(x)yo+l1(x)y1+l2(x)y2+l3(x)y3(1分) 得出(2分)(2分)(2分)(2分)(1分)(2)(1分)(2分) (2分)(2分),(2分)(1分)第三章1、令,且设,求使得为在-1,1上的最佳平方逼近多项式。2已知数据对(7,3.1),(8,4.9),(9,5.3),(10,5.8),(11,6.1), (

3、12,6.4),(13,5.9)。试用二次多项式拟合这组数据。解:y0.145x23.324x12.794第四章:1数据如下表x1.001.011.021.031.04f (x)3.103.123.143.183.24用中心差分公式,分别取h = 0.01、0.02计算解:中心差分公式为 (2分)1)取h=0.01时, (4分)2)取h=0.02时, (4分)2(10分)根据如下函数表X1.01.11.21.31.41.51.6f(x)1.5431.6681.8111.9712.1512.3322.577用中心差分公式,分别取h=0.3,0.1计算解:中心差分公式(2分)取h=0.3时,(4分

4、)取h=0.1时,(4分)3分别用复合梯形公式T6和复合辛普森公式S3计算定积分的值解:(2分) (3分) (3分)f(0)=1,f(0.1)=0.9090,f(0.2)=.08333,f(0.3)=0.7692,f(0.4)=0.7142,f(0.5)=0.6667,f(0.6)=0.625(7分)4、利用复合Simpson公式S4计算积分(取小数点后4位)。解:(2分), (9分)(4分)第五章:1、利用列主元消去法求解线性方程组 (计算过程保留到小数点后四位).解:(1分)(2分)(2分)(2分)回代解得 , (1分)2、用矩阵的LU分解法解方程组解:设(1分)(4分)LUX=b其中设U

5、X=y,则Ly=b(2分)y=(2,1,1)T UX=y (2分)x=(0,2,1)T(1分)5. 用追赶法解三对角方程组Ax=b,其中解:用解对三角方程组的追赶法公式计算得6. 用平方根法解方程组解:用分解直接算得由及求得第六章:1、用Gauss-Seidel迭代法求解方程组,取初值,写出Gauss-Seidel迭代格式,求出,计算,并根据原方程组的系数矩阵说明该迭代格式是否收敛2、对方程组(1)写出其Jacobi迭代格式,并据迭代矩阵的范数,说明该迭代格式收敛。(2)写出题中方程组的Seidel迭代格式,取,迭代求出,。(1)解:其Jacobi迭代格式为:(5分) (6分)1(2分)收敛(

6、1分)(2)解:其Seidle迭代格式为:(5分)TT(2分)T(2分)T(1分)3对方程组(1)写出其Jacobi迭代格式,并根据迭代矩阵的范数,说明该迭代格式收敛。(2)写出Seidel迭代格式,取,迭代求出;计算。解:(1)其Jacobi迭代格式为 (5分)迭代矩阵为 (2分) 1(2分) 所以Jacobi迭代格式收敛 (1分)(2)其Seidel迭代格式为: (5分)将代入得 (3分)所以 (2分)5. 用SOR方法解方程组(取=1.03)精确解,要求当时迭代终止.解:用SOR方法解此方程组的迭代公式为取,当时,迭代5次达到要求第七章1利用牛顿迭代法求方程的近似根,取初值进行计算,使误

7、差不超过103解:牛顿迭代格式为: (1分);利用牛顿迭代法求解,将代入,得(1分), (1分)(1分),(1分)所以取 (2分)2、求方程在1.5,2内的近似解:取x0=2,用Newton迭代法迭代三次,求出xx3。解:牛顿迭代法公式(1分),(1分)Newton迭代公式:(3分)x0=2代入x1=1.870967742(1分)x2=1.855780702(1分)x3=1.855584561(1分)xx3=1.85558(2分)第九章:1、应用Euler方法计算积分在点x = 0.5, 1, 1.5, 2时的近似值.2、用改进的Euler公式,求初值问题在x1=0.1,x2=0.2,x3=0

8、.3三点处的数值解(即当x0=0,y0=1,h=0.1时,求出y1,y2,y3)解:改进的欧拉公式:(2分)初值x0=0,y0=1 (2分)x0=0, y0=1,yp=1.1(3分)x1=0.1,y1=1.1+0.051+1.2=1+0.11=1.11 yp=1.231(3分)x2=0.2,y2=1.24205 yp=1.38625(3分)x3=0.3,y3=1.39846525 (2分)3、用改进的Euler公式,求初值问题在x1=0.2,x2=0.4,x3=0.6三点处的数值解(即当x0=0,y0=0,h=0.2时,求出y1,y2,y3)。解:改进的欧拉公式: (3分)将代入得 (2分)当

9、x0=0,y0=0时, yp=0.2 (2分)x1=0.2,y1=0.26,(2分) yp=0.604 (1分)x2=0.4,y2=0.5928,(2分) yp=1.10991 (1分)x3=0.6,y3=1.23344 (2分)4、用欧拉方法求解常微分方程初值问题,取h=0.2,计算精确到4位小数xkyk000.20.20000.40.37630.60.49210.80.54231.00.54665、微分方程初值问题,用改进的欧拉方法求的近似值,(即h=0.2,计算二步),并与准确解: 比较计算精确到4位小数xkykY(xk)01.0000 0.20.83600.8333 0.40.71760.7143 6、已知初值问题:,取步长h =0.1,(1)用(显式的)Euler方法求解上述初值问题的数值解;(2)用改进的Euler方法求上述初值问题的数值解。 (14分)解:1 .建立具体的Euler公式: 3分已知,则有: 5分 7分 2.建立具体的改进的Euler公式: 10分已知则有: 12分 14分-第 13 页-

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 单元课程

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁