《2022年湘教版七年级下册数学知识点梳理 2.pdf》由会员分享,可在线阅读,更多相关《2022年湘教版七年级下册数学知识点梳理 2.pdf(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、1 / 22湘教版七年级数学下册知识点归纳第一章二元一次方程组一、二元一次方程组1、概念:二元一次方程:含有两个未知数,且未知数的指数(即次数)都是1 的方程,叫二元一次方程。二元一次方程组:两个二元一次方程(或一个是一元一次方程,另一个是二元一次方程;或两个都是一元一次方程;但未知数个数仍为两个)合在一起,就组成了二元一次方程组。2、二元一次方程的解和二元一次方程组的解:使二元一次方程左右两边的值相等(即等式成立)的两个未知数的值,叫二元一次方程的解。使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫二元一次方程组的解。注:、因为二元一次方程含有两个未知数,所以,二元一次方程的
2、解是一组(对)数,用大括号联立;、一个二元一次方程的解往往不是唯一的,而是有许多组;、而二元一次方程组的解是其中两个二元一次方程的公共解,一般地,只有唯一的一组,但也可能有无数组或无解(即无公共解)。二元一次方程组的解的讨论:已知二元一次方程组、当 a1/a2 b1/b2 时,有唯一解;、当 a1/a2 = b1/b2 c1/c2时,无解;、当 a1/a2 = b1/b2 = c1/c2时,有无数解。例 如 : 对 应 方 程 组 : 、 、例:判断下列方程组是否为二元一次方程组: 、 、 、3、用含一个未知数的代数式表示另一个未知数:用含 X的代数式表示Y,就是先把X看成已知数,把Y看成未知
3、数;用含Y的代数式表示X,则相当于把Y看成已知数,把X看成未知数。例: 在方程 2x + 3y = 18 中, 用含 x 的代数式表示y 为: _, 用含 y 的代数式表示x 为:_ 。4、根据二元一次方程的定义求字母系数的值:a1x + b1y = c1 a2x + b2y = c2 x + y = 4 3x - 5y = 9 x + y = 3 2x + 2y = 5 x + y = 4 2x + 2y = 8 a + b = 2 b + c = 3 x = 4 y = 5 3t + 2s = 5 ts + 6 = 0 x = 11 2x + 3y = 0 精选学习资料 - - - - -
4、 - - - - 名师归纳总结 - - - - - - -第 1 页,共 22 页2 / 22要抓住两个方面:、未知数的指数为1,、未知数前的系数不能为0 例:已知方程 (a-2)x(/a/-1) (b+5)y(b2-24) = 3 是关于 x、 y 的二元一次方程,求a、b 的值。5、求二元一次方程的整数解例:求二元一次方程 3x + 4y = 18 的正整数解。思路:利用含一个未知数的代数式表示另一个未知数的方法,可以求出方程有正整数解时x、y 的取值范围,然后再进一步确定解。解:用含x 的代数式表示y: y = 9/2 (3/4)x 用含 y 的代数式表示x: x = 6 (4/3)y
5、因为是求正整数解,则:9/2 (3/4)x 0 , 6 (4/3)y 0 所以, 0 x 6 ,0 y 设元(设未知数) 根据数量关系式列出方程组 解方程组 检验并作答 (注意:此步骤不要忘记)2、列方程组解应用题的常见题型:(1) 、 和差倍分问题: 解这类问题的基本等量关系式是:较大量 - 较小量 = 相差量, 总量 = 倍数 倍量;(2) 、产品配套问题:解这类题的基本等量关系式是:加工总量成比例;(3) 、速度问题:解这类问题的基本关系式是:路程 = 速度 时间,包括相遇问题、追及问题等;(4) 、航速问题:、顺流(风):航速 = 静水(无风)时的速度 + 水(风)速;、逆流(风) :
6、航速 = 静水(无风)时的速度 水(风)速;(5) 、工程问题:解这类问题的基本关系式是:工作总量 = 工作效率工作时间, (有时需把工作总量看作 1) ;(6) 、增长率问题: 解这类问题的基本关系式是:原量(1+增长率) = 增长后的量, 原量 (1- 减少率)= 减少后的量;2x - y = 6 x + 2y = 16x = 5.6 y = 5.25x + y = 3 mx + 5y = 4x - 2y = 5 5x + ny = 13x - 5y = 2m 2x + 7y = m-182x - y = k 3x + y = k+1精选学习资料 - - - - - - - - - 名师归
7、纳总结 - - - - - - -第 4 页,共 22 页5 / 22(7) 、盈亏问题:解这类问题的关键是从盈(过剩)、亏(不足)两个角度来把握事物的总量;(8) 、数字问题:解这类问题,首先要正确掌握自然数、奇数、偶数等有关概念、特征及其表示;(9) 、几何问题:解这类问题的基本关系是有关几何图形的性质、周长、面积等计算公式;(10) 、年龄问题:解这类问题的关键是抓住两人年龄的增长数相等。例 1:一批水果运往某地,第一批360 吨,需用6 节火车车厢加上15 辆汽车,第二批440 吨,需用8 节火车车厢加上10 辆汽车,求每节火车车厢与每辆汽车平均各装多少吨?例 2:甲、乙两物体分别在周
8、长为400 米的环形轨道上运动,已知它们同时从一处背向出发,25 秒后相遇,若甲物体先从该处出发,半分钟后乙物体再从该处同向出发追赶甲物体,则再过3 分钟后才赶上甲,假设甲、乙两物体的速度均不变,求甲、乙两物体的速度。例 3:甲、乙二人分别以均匀速度在周长为600 米的圆形轨道上运动,甲的速度比乙大,当二人反向运动时,每 150 秒相遇一次,当二人同向运动时,每10 分钟相遇一次,求二人的速度。例 4:有两种酒精溶液,甲种酒精溶液的酒精与水的比是3 :7,乙种酒精溶液的酒精与水的比是4 :1,今要得到酒精与水的比是3 : 2 的酒精溶液50kg,求甲、乙两种溶液各取多少kg?例 5:一张方桌由
9、一个桌面和四条桌腿组成,如果1 立方米木料可制成方桌桌面50 个,或制作桌腿300条,现有5 立方米木料,请问,要用多少木料做桌面,多少木料做桌腿,能使桌面恰好配套?此时,可以制成多少张方桌?例 6:某人要在规定的时间内由甲地赶往乙地,如果他以每小时50 千米的速度行驶,就会迟到24 分钟,如果他以每小时75 千米的速度行驶,则可提前24 分钟到达乙地,求甲、乙两地间的距离。例 7:某农场有300 名职工耕种51 公顷土地,计划种植水稻、棉花、蔬菜三种农作物,已知种植各种农作物每公顷所需劳动力人数及投入资金如右表:已知该农场计划投入资金67 万元,应该怎样安排这三种农作物的种植面积才能使所有职
10、工都有工作而且投入资金正好够用?例 8:某酒店的客房有三人间和两人间两种,三人间每人每天25 元,两人间每人每天35 元,一个50 人的旅游团到该酒店租了若干间客房,且每间客房恰好住满,一天共花去1510 元,求两种客房各租了多少间?农作物品种每公顷需劳动力每公顷需投入资金水稻4 人1 万元棉花8 人1 万元蔬菜5 人2 万元年级捐款数额(元)捐助贫困中学生人数(名)捐助贫困小学生人数(名)精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 22 页6 / 22例 9:某山区有23 名中、小学生因贫困失学需要捐助,资助一名中学生的学习费用需
11、要 a 元,资助一名小学生的学习费用需要b 元。某校学生积极捐款,初中各年级学生捐款数额与使用这些捐款恰好资助受捐助中学生和小学生人数的部分情况如右表:(1) 、求 a、b 的值;(2)初三年级的捐款解决了其余贫困中小学生的学习费用,请分别计算出初三年级的捐款所资助的中学生和小学生人数。四、三元一次方程组的解法1、概念: 由三个方程组成方程组,且方程组中共含有三个未知数,每个方程中含有的未知数的次数都是1次,这样的方程组叫三元一次方程组。注:三元一次方程组中的三个方程并不一定都是三元一次方程,只需满足“方程组中共含有三个未知数”的条件即可。2、解三元一次方程组的基本思想:例 1:解方程组例 2
12、:在 y = ax 2+bx+c 中,当 x=1 时, y=0;x=2 时, y=3;x=3 时,y=28 ,求 a、 b、c 的值。当x = -1时,y 的值是多少?例 3:甲、乙、丙三数之和是26,甲数比乙数大1,甲数的两倍与丙数的和比乙数大18,求这三个数。例 4:小明从家到学校的路程为3.3 千米,其中有一段上坡路,一段平路,一段下坡路,如果保持上坡路每小时行 3 千米,平路每小时行4 千米,下坡路每小时行5 千米,那么小明从家到学校需要1 小时,从学校回家只需要44 分钟。求小明家到学校的上坡路、平路、下坡路各是多少千米?初一年级4000 2 4 初二年级4200 3 3 初三年级7
13、400 三元一次方程组消元 ( 代入法、加减法)二元一次方程组消元 ( 代入法、加减法)一元一次方程3x + 4z = 7 2x + 3y + z = 9 5x 9y + 7z = 8 3x + 4y + z = 14 x + 5y + 2z = 17 2x + 2y - z = 3 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 22 页7 / 22第二章 整式的乘法1同底数幂的乘法:aman=am+n,底数不变,指数相加. 2幂的乘方与积的乘方:(am)n=amn,底数不变,指数相乘; (ab)n=anbn,积的乘方等于各因式乘方的
14、积. 3单项式的乘法:系数相乘,相同字母相乘,只在一个因式中含有的字母,连同指数写在积里. 4单项式与多项式的乘法:m(a+b+c)=ma+mb+mc ,用单项式去乘多项式的每一项,再把所得的积相加. 5多项式的乘法:(a+b) (c+d)=ac+ad+bc+bd ,先用多项式的每一项去乘另一个多项式的每一项,再把所得的积相加.6乘法公式:(1)平方差公式:(a+b)(a-b)= a2-b2,两个数的和与这两个数的差的积等于这两个数的平方差;(2)完全平方公式: (a+b)2=a2+2ab+b2, 两个数和的平方,等于它们的平方和,加上它们的积的2 倍; (a-b)2=a2-2ab+b2 ,
15、两个数差的平方,等于它们的平方和,减去它们的积的2 倍; (a+b-c)2=a2+b2+c2+2ab-2ac-2bc ,略 . 7配方:(1)若二次三项式x2+px+q 是完全平方式 , 则有关系式:q2p2;(2)二次三项式ax2+bx+c 经过配方,总可以变为a(x-h)2+k 的形式,利用a(x-h)2+k 可以判断ax2+bx+c 值的符号;当 x=h 时,可求出ax2+bx+c 的最大(或最小)值k. ( 3)注意:2x1xx1x222. 8同底数幂的除法:aman=am-n,底数不变,指数相减. 9零指数与负指数公式: (1)a0=1 (a 0) ; a-n=na1,(a 0).
16、注意: 00,0-2无意义;(2)有了负指数,可用科学记数法记录小于1 的数,例如:0.0000201=2.01 10-5 . 第三章因式分解1. 因式分解定义:把一个多项式化成几个整式乘积的形式,这种变形叫因式分解。即:多项式几个整式的积例:111()333axbxx ab因式分解是对多项式进行的一种恒等变形,是整式乘法的逆过程。2. 因式分解的方法:精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 7 页,共 22 页8 / 22(1)提公因式法:定义:如果多项式的各项有公因式 ,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这个变形
17、就是提公因式法分解因式。公因式: 多项式的各项都含有的相同的因式。公因式可以是一个数字或字母,也可以是一个单项式或多项式。系数取各项系数的最大公约数字母取各项都含有的字母指数取相同字母的最低次幂例:333234221286a b ca b ca b c的公因式是解析:从多项式的系数和字母两部分来考虑,系数部分分别是12、-8 、6,它们的最大公约数为2;字母部分33323422,a b c a b ca b c都含有因式32a b c,故多项式的公因式是232a b c. 提公因式的步骤第一步:找出公因式;第二步:提公因式并确定另一个因式,提公因式时,可用原多项式除以公因式,所得商即是提公因式
18、后剩下的另一个因式。注意: 提取公因式后,对另一个因式要注意整理并化简,务必使因式最简。多项式中第一项有负号的,要先提取符号。例 1:把2233121824a baba b分解因式 . 解析:本题的各项系数的最大公约数是6,相同字母的最低次幂是ab,故公因式为6ab。解:2233121824a baba b226(234)ababa b例 2:把多项式3(4)(4)xxx分解因式解析:由于4(4)xx,多项式3(4)(4)xxx可以变形为3(4)(4)xx x, 我们可以发现多项式各项都含有公因式(4x),所以我们可以提取公因式(4x)后 , 再将多项式写成积的形式. 解:3(4)(4)xxx
19、=3(4)(4)xx x=(3)(4)x x精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 8 页,共 22 页9 / 22例 3:把多项式22xx分解因式解:22xx=2(2 )(2)xxx x(2)运用公式法定义:把乘法公式反过来用,就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法。2222233223322.()().2().()().()()aabab abbabbabcabab aabbdabab aabb逆用平方差公式:逆用完全平方公式:a逆用立方和公式:(拓展)逆用立方差公式:(拓展)注意 : 公式中的字母可代表一个数
20、、一个单项式或一个多项式。选择使用公式的方法:主要从项数上看,若多项式是二项式可考虑平方差公式;若多项式是三项式,可考虑完全平方公式。例 1:因式分解21449aa解:21449aa=2(7)a例 2:因式分解222 ()()aa bcbc解:222 ()()aa bcbc=2()abc(3)分组分解法(拓展)将多项式分组后能提公因式进行因式分解;例:把多项式1abab分解因式解:1abab=()(1)abab=(1)(1)(1)(1)a bbab将多项式分组后能运用公式进行因式分解. 例:将多项式2221aabb因式分解解:2221aabb=222(2)1()1(1)(1)aabbababa
21、b(4)十字相乘法(形如2()()()xpq xpqxpxq形式的多项式,可以考虑运用此种方法)精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 9 页,共 22 页10 / 22方法:常数项拆成两个因数pq和,这两数的和pq为一次项系数2()xpq xpqxpxq2()()()xpq xpqxpxq例:分解因式230 xx分解因式252100 xx补充点详解补充点详解我们可以将 -30 分解成 p q的形式,我们可以将100 分解成 p q 的形式,使 p+q=-1, p q=-30, 我们就有 p=-6, 使 p+q=52, p q=100, 我
22、们就有p=2, q=5 或 q=-6,p=5 。 q=50或 q=2,p=50 。所以将多项式2()xpq xpq可以分所以将多项式2()xpq xpq可以分解为()()xpxq解为()()xpxqx5 x2 x-6 x50 230 xx(6)(5)xx252100 xx(50)(2)xx3. 因式分解的一般步骤:如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提” 、 “二套”、 “三分组”、“四十字”。注意 :因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的
23、因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个 整式的积的形式。一、例题解析精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 10 页,共 22 页11 / 22提公因式法提取公因式:如果多项式的各项有公因式,一般要将公因式提到括号外面. 确定公因式的方法:系数 取多项式各项系数的最大公约数;字母 ( 或多项式因式) 取各项都含有的字母( 或多项式因式) 的最低次幂 . 【例 1】 分解因式:2121510nna abab ba(n为正整数 ) 212146nmnmabab(m、n为大
24、于 1 的自然数 ) 【巩固】 分解因式:2122()()()2()()nnnxyxzxyyxyz ,n为正整数 . 【例 2】 先化简再求值,2y xyxyxyx ,其中2x,12y求代数式的值:22(32) (21)(32)(21)(21)(23 )xxxxxxx ,其中23x. 【例 3】 已知:2bca,求22221()()(222 )33333a abcbcabcbca 的值 . 分解因式:322()()()()()xxyzyzax z zxyx y zxyxza . 公式法平方差公式:22()()abab ab公式左边形式上是一个二项式,且两项的符号相反;每一项都可以化成某个数或式
25、的平方形式;右边是这两个数或式的和与它们差的积,相当于两个一次二项式的积. 完全平方公式:2222()aabbab2222()aabbab左边相当于一个二次三项式;左边首末两项符号相同且均能写成某个数或式的完全平方式;精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 11 页,共 22 页12 / 22左边中间一项是这两个数或式的积的2 倍,符号可正可负;右边是这两个数或式的和( 或差 ) 的完全平方,其和或差由左边中间一项的符号决定. 一些需要了解的公式:3322()()abab aabb3322()()abab aabb33223()33abaa
26、 babb33223()33abaa babb第四章相交线与平行线一、知识网络结构二、知识要点1、在同一平面内,两条直线的位置关系有两种:相交和 平行 , 垂直是相交的一种特殊情况。2、在同一平面内,不相交的两条直线叫平行线。如果两条直线只有一个公共点,称这两条直线相交;如果两条直线没有公共点,称这两条直线平行。3、两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。邻补角的性质:邻补角互补。如图 1 所示,与互为邻补角,与互为邻补角。 + =180; + =180; + =180; + =180。4、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的反向延长
27、线,这样的两个角互为对顶角。 对顶角的性质: 对顶角相等。 如图 1 所示,与互为对顶角。 = ; = 。平移命题、定理的两直线平行:平行于同一条直线性质角互补:两直线平行,同旁内性质相等:两直线平行,内错角性质相等:两直线平行,同位角性质平行线的性质的两直线平行:平行于同一条直线判定直线平行:同旁内角互补,两判定线平行:内错角相等,两直判定线平行:同位角相等,两直判定定义平行线的判定平行线,不相交的两条直线叫平行线:在同一平面内平行线及其判定内角同位角、内错角、同旁垂线相交线相交线相交线与平行线43214321_:图 1 1 3 4 2 精选学习资料 - - - - - - - - - 名师
28、归纳总结 - - - - - - -第 12 页,共 22 页13 / 225、两条直线相交所成的角中,如果有一个是直角或 90时,称这两条直线互相垂直,其中一条叫做另一条的垂线。如图2 所示,当= 90时,。垂线的性质:性质 1:过一点有且只有一条直线与已知直线垂直。性质 2:连接直线外一点与直线上各点的所有线段中,垂线段最短。性质 3:如图 2 所示,当ab 时,= = = = 90。点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离。6、同位角、内错角、同旁内角基本特征:在两条直线 (被截线 )的 同一方,都在第三条直线(截线 )的 同一侧,这样的两个角叫同位角。图 3
29、中,共有对同位角:与是同位角;与是同位角;与是同位角;与是同位角。在两条直线 (被截线 ) 之间,并且在第三条直线(截线 )的 两侧,这样的两个角叫内错角。图 3 中,共有对内错角:与是内错角;与是内错角。在两条直线 (被截线 )的 之间, 都在第三条直线(截线 )的 同一旁, 这样的两个角叫同旁内角。 图 3 中,共有对同旁内角:与是同旁内角;与是同旁内角。7、平行公理 :经过直线外一点有且只有一条直线与已知直线平行。平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。平行线的性质:性质 1:两直线平行,同位角相等。如图4 所示,如果a b,则 = ; = ; = ;
30、= 。性质 2:两直线平行,内错角相等。如图4 所示,如果a b,则 = ; = 。性质 3:两直线平行,同旁内角互补。如图4 所示,如果ab,则 + =180; + =180。性质 4:平行于同一条直线的两条直线互相平行。如果a b,ac,则。8、平行线的判定:判定 1:同位角相等,两直线平行。如图5 所示,如果 = 或 = 或 = 或 = ,则 ab。判定 2:内错角相等,两直线平行。如图5 所示,如果 = 或 = ,则 ab 。判定 3:同旁内角互补,两直线平行。如图5 所示,如果 + =180;图 2 1 3 4 2 a b 图 3 a 5 7 8 6 1 3 4 2 b c 图 4
31、a 5 7 8 6 1 3 4 2 b c 图 5 a 5 7 8 6 1 3 4 2 b c 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 13 页,共 22 页14 / 22 + =180,则 ab。判定 4:平行于同一条直线的两条直线互相平行。如果a b,ac,则。9、判断一件事情的语句叫命题 。命题由题设和 结论两部分组成,有真命题和 假命题之分。如果题设成立,那么结论一定成立,这样的命题叫真命题;如果题设成立,那么结论不一定成立,这样的命题叫 假命题 。真命题的正确性是经过推理证实的,这样的真命题叫定理 ,它可以作为继续推理的依据。10
32、、平移: 在平面内, 将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移变换,简称平移。平移后,新图形与原图形的形状和 大小完全相同。平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。平移性质 :平移前后两个图形中对应点的连线平行且相等;对应线段相等;对应角相等。第五章旋转一 .知识框架二知识概念1.旋转:在平面内,将一个图形绕一个图形按某个方向转动一个角度,这样的运动叫做图形的旋转。这个定点叫做旋转中心,转动的角度叫做旋转角。(图形的旋转是图形上的每一点在平面上绕着某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等,对应线段的长度、
33、对应角的大小相等,旋转前后图形的大小和形状没有改变。)2.旋转对称中心: 把一个图形绕着一个定点旋转一个角度后,与初始图形重合, 这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角(旋转角小于0 ,大于 360 ) 。3中心对称图形与中心对称:中心对称图形:如果把一个图形绕着某一点旋转180 度后能与自身重合,那么我们就说,这个图形成中心对称图形。中心对称:如果把一个图形绕着某一点旋转180 度后能与另一个图形重合,那么我们就说,这两个图形成中心对称。4.中心对称的性质:关于中心对称的两个图形是全等形。关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
34、精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 14 页,共 22 页15 / 22关于中心对称的两个图形,对应线段平行(或者在同一直线上)且相等。一、精心选一选 ( 每小题 3 分,共 30 分)1下面的图形中,是中心对称图形的是()ABCD2平面直角坐标系内一点P(2,3)关于原点对称的点的坐标是()A (3, 2)B (2,3)C ( 2, 3)D(2, 3)33 张扑克牌如图1 所示放在桌子上,小敏把其中一张旋转180o后得到如图( 2)所示,则她所旋转的牌从左数起是()A第一张B第二张C第三张D第四张4在下图右侧的四个三角形中,不能由AB
35、C 经过旋转或平移得到的是()5如图 3 的方格纸中,左边图形到右边图形的变换是()A向右平移7 格B以 AB 的垂直平分线为对称轴作轴对称,再以AB 为对称轴作轴对称C绕 AB 的中点旋转1800,再以 AB 为对称轴作轴对称D以 AB 为对称轴作轴对称,再向右平移7 格6从数学上对称的角度看,下面几组大写英文字母中,不同于另外三组的一组是()AA N E GBK B X N C X I H O DZ D W H 7如图 4,C 是线段 BD 上一点,分别以BC、CD 为边在 BD 同侧作等边ABC和等边 CDE,AD 交 CE 于 F,BE 交 AC 于 G,则图中可通过旋转而相互得到的三
36、角形对数有( )A1 对B2 对C3 对D4 对8下列这些复杂的图案都是在一个图案的基础上,在“几何画板”软件中拖动一点后形成的,它们中每一个图案都可以由一个“基本图案”通过连续旋转得来,旋转的角度是()A 30B 45C 60D 909如图 5 所示,图中的一个矩形是另一个矩形顺时针方向旋转90后形成的个数是()A B C A B C D 图 4 图 5 图精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 15 页,共 22 页16 / 22图 12 Al 个B 2个C3 个 D 4个10如图 6, ABC和 ADE都是等腰直角三角形,C和 ADE
37、 都是直角,点C在 AE上, ABC绕着 A点经过逆时针旋转后能够与 ADE重合得到图7,再将图23A 4作为“基本图形”绕着 A点经过逆时针连续旋转得到图7. 两次旋转的角度分别为()A45, 90B 90, 45C 60, 30D30, 60 二、耐心填一填(每小题3 分,共 24 分)11关于中心对称的两个图形,对称点所连线段都经过,而且被_平分 .12在平行四边形、矩形、菱形、正方形、等腰梯形这五种图形中,既是轴对称图形,又是中心对称图形的是_13时钟上的时针不停地旋转,从上午8 时到上午11 时,时针旋转的旋转角是 _14如图 8,ABC以点A为旋转中心,按逆时针方向旋转60,得AB
38、C,则ABB是三角形 .15已知 0,则点(2, 3)关于原点的对称点1在第象限16如图 9, COD 是 AOB 绕点 O 顺时针方向旋转40后所得的图形,点C 恰好在 AB 上, AOD 90,则 D 的度数是17如图 10,在两个同心圆中,三条直径把大圆分成相等的六部分,若大圆的半径为2,则图中阴影部分的面积是. 18如图 ,四边形 ABCD 中, BAD= C=90o,AB=AD ,AEBC 于 E,若线段AE=5 ,则 S四边形ABCD。三、细心解一解 (共 46 分)19 (6 分)如图 12,四边形ABCD 的 BAD= C=90o,AB=AD,AE BC 于 E,BEA旋转后能
39、与DFA重合。(1)旋转中心是哪一点? (2)旋转了多少度? (3)如果点A 是旋转中心,那么点B 经过旋转后,点B 旋转到什么位置?20 (4分)如图 13,请画出ABC关于点 O点为对称中心的对称图形ABCDE图 7 图 8 ODCBA图 9 图 10 EDCBA图 11 图ABCDE图 6 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 16 页,共 22 页17 / 2221 (6 分)如图14,方格纸中的每个小方格都是边长为1 个单位的正方形,在建立平面直角坐标系后,ABC的顶点均在格点上,点C的坐标为(41),把ABC向上平移5 个单位
40、后得到对应的111A B C,画出111A B C,并写出1C的坐标;以原点O为对称中心,再画出与111A B C关于原点O对称的222A B C,并写出点2C的坐标18 (4 分)如图15,方格中有一条美丽可爱的小金鱼(1)若方格的边长为1,则小鱼的面积为(2)画出小鱼向左平移3 格后的图形(不要求写作图步骤和过程)22 (6 分)如图 16,E、F 分别是正方形ABCD 的边 CD、DA 上一点,且CEAFEF,请你用旋转的方法求 EBF 的大小2319 ( 8 分)将一张透明的平行四边形胶片沿对角线剪开,得到图中的两张三角形胶片和将这两张三角形胶片的顶点与顶点重合,把绕点顺时针方向旋转,
41、这时与相交于点( 1)当旋转至如图位置,点,在同一直线上时,与的数量关系ABCDEFBEDEFBACDFODEF()B ECD,AFDDCA图 14 图 15 图 16 C A E F D B C D O A F B(E)A D O F C B(E)图图图精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 17 页,共 22 页18 / 22是2分(2)当继续旋转至如图位置时,(1)中的结论还成立吗?请说明理由(3)在图中,连接,探索与之间有怎样的位置关系,并证明第六章数据的分析一、知识点讲解:1. 平均数 :(1)算术平均数:一组数据中,有n 个数据
42、 ,则它们的算术平均数为nxxxxn21. (2)加权平均数:若在一组数字中,出现次,出现次,出现次,那么叫做、的加权平均数。其中,、分别是、的权 .权的理解 :反映了某个数据在整个数据中的重要程度 。权的表示方法:比、百分比、频数(人数、个数、次数等)。2. 中位数: 将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。3. 众数: 一组数据中出现次数最多的数据就是这组数据的众数。4. 平均数中位数众数的区别与联系相同点平均数、中位数和众数这三个统计量的相同之处主要表现
43、在:都是来描述数据集中趋势的统计量;都可用来反映数据的一般水平;都可用来作为一组数据的代表。不同点它们之间的区别,主要表现在以下方面。1) 、定义不同平均数:一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。中位数:将一组数据按大小顺序排列,处在最中间位置的一个数叫做这组数据的中位数。众数:在一组数据中出现次数最多的数叫做这组数据的众数。2) 、求法不同平均数:用所有数据相加的总和除以数据的个数, 需要计算才得求出。中位数:将数据按照从小到大或从大到小的顺序排列,如果数据个数是奇数,则处于最中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数是这组数据的中位
44、数。它的求出不需或只需简单的计算。众数:一组数据中出现次数最多的那个数,不必计算就可求出。3) 、个数不同在一组数据中,平均数和中位数都具有惟一性,但众数有时不具有惟一性。在一组数据中,可能不止一个众数,也可能没有众数。4) 、代表不同平均数:反映了一组数据的平均大小,常用来一代表数据的总体“平均水平”。中位数:像一条分界线,将数据分成前半部分和后半部分,因此用来代表一组数据的“中等水平”。众数:反映了出现次数最多的数据,用来代表一组数据的“多数水平”。这三个统计量虽反映有所不同,但都可表示数据的集中趋势,都可作为数据一般水平的代表。5) 、特点不同DEFBOAD,BOAD精选学习资料 - -
45、 - - - - - - - 名师归纳总结 - - - - - - -第 18 页,共 22 页19 / 22平均数:与每一个数据都有关, 其中任何数据的变动都会相应引起平均数的变动。主要缺点是易受极端值的影响,这里的极端值是指偏大或偏小数。中位数:与数据的排列位置有关,某些数据的变动对它没有影响;它是一组数据中间位置上的代表值,不受数据极端值的影响。众数:与数据出现的次数有关,着眼于对各数据出现的频率的考察,其大小只与这组数据中的部分数据有关,不受极端值的影响, 其缺点是具有不惟一性,一组数据中可能会有一个众数,也可能会有多个或没有。6) 、作用不同平均数:是统计中最常用的数据代表值,比较可
46、靠和稳定,因为它与每一个数据都有关,反映出来的信息最充分。平均数既可以描述一组数据本身的整体平均情况,也可以用来作为不同组数据比较的一个标准。因此,它在生活中应用最广泛,比如我们经常所说的平均成绩、平均身高、平均体重等。中位数:作为一组数据的代表,可靠性比较差,因为它只利用了部分数据。但当一组数据的个别数据偏大或偏小时,用中位数来描述该组数据的集中趋势就比较合适。众数:作为一组数据的代表,可靠性也比较差,因为它也只利用了部分数据。在一组数据中,如果个别数据有很大的变动,且某个数据出现的次数最多,此时用该数据(即众数)表示这组数据的“集中趋势”就比较适合。5.极差: 一组数据中的最大数据与最小数
47、据的差叫做这组数据的极差。极差反映的是数据的变化范围。6.方差:设有 n 个数据nxxx,21, 各数据与它们的平均数的差的平方分别是2221)()(xxxx, ,2)(xxn我们用它们的平均数,即用)()()(1222212xxxxxxnSn来衡量这组数据的波动大小,并把它叫做这组数据的方差。当一组数据比较小时可以用公式22222121(.)nsxxxnxn计算。方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定。标准差: 方差的算术平方根,即222211xxxxxxnSn并把它叫做这组数据的标准差. 它也是一个用来衡量一组数据的波动大小的重要的量. 7. 极差、方差和标准差的区别
48、与联系:联系:极差、方差和标准差都是用来衡量(或描述)一组数据偏离平均数的大小(即波动大小)的指标,常用来比较两组数据的波动情况。区别:极差是用一组数据中的最大值与最小值的差来反映数据的变化范围,主要反映一组数据中两个极端值之间的差异情况,对其他的数据的波动不敏感。方差是用“先平均,再求差,然后平方,最后再平均”的方法得到的结果,主要反映整组数据的波动情况,是反映一组数据与其平均值离散程度的一个重要指标,每个数年据的变化都将影响方差的结果,是一个对整组数据波动情况更敏感的指标。在实际使用时, 往往计算一组数据的方差,来衡量一组数据的波动大小。标准差实际是方差的一个变形,只是方差的单位是原数据单
49、位的平方,而标准差的单位与原数据单位相同。8. 数据的收集与整理的步骤: 1. 收集数据2. 整理数据3. 描述数据4. 分析数据5. 撰写调查报告6.精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 19 页,共 22 页20 / 22交流9. 平均数、方差的三个运算性质如果一组数据x1, x2, x3, xn的平均数是,方差是 s2。那么( 1)一组新数据x1+b,x2+b,x3+b, xn+b 的平均数是+b,方差是s2。(2)一组新数据ax1,ax2,ax3, axn的平均数是a,方差是a2s2. (3)一组新数据ax1+b,ax2+b,ax
50、3+b, axn+b 的平均数是a+b,方差是a2s2. 二、典型例题:15 名同学目测同一本教科书的宽度时,产生的误差如下(单位:mm ) :,则这组数据的极差为() A4 mm B 3 mm C5 mm D 0 mm 2小伟五次数学考试成绩分别为:86 分, 78 分, 80 分, 85 分, 92 分,李老师想了解小伟数学学习变化情况,则李老师最关注小伟数学成绩的() 平均数众数中位数方差3. 一组数据的方差一定是() A正数 B任意实数C 负数 D 非负数4金华火腿闻名遐迩. 某火腿公司有甲、乙、丙三台切割包装机,同时分装质量为500 克的火腿心片.现从它们分装的火腿心片中各随机抽取1