常微分方程期末考试题大全东北师大.doc

上传人:叶*** 文档编号:36209634 上传时间:2022-08-25 格式:DOC 页数:77 大小:3.09MB
返回 下载 相关 举报
常微分方程期末考试题大全东北师大.doc_第1页
第1页 / 共77页
常微分方程期末考试题大全东北师大.doc_第2页
第2页 / 共77页
点击查看更多>>
资源描述

《常微分方程期末考试题大全东北师大.doc》由会员分享,可在线阅读,更多相关《常微分方程期末考试题大全东北师大.doc(77页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、证明题: 设在上连续,且,又,求证:对于方程 的一切解,均有。证明 由一阶线性方程通解公式,方程的任一解可表示为 ,即。由于,则存在,当时,。因而,由,从而有,显然。应用洛比达法则得 。证明题:线性齐次微分方程组最多有个线性无关的解,其中是定义在区间上的的连续矩阵函数。证 要证明方程组最多有个线性无关的解,首先要证明它有个线性无关的解,然后再证明任意个解都线性相关。由于是定义在区间上的的连续矩阵函数,所以对任意给定的初始条件,方程组存在唯一的解。分别取初始条件,它们对应的解分别为且这个解在时的朗斯基行列式为,则是个线性无关的解。任取方程组的个解,这个解都是维向量,于是由线性代数有关理论知,它们

2、线性相关。这就证明了方程组最多有个线性无关的解。证明题:如果已知二阶线性非齐次方程对应齐次方程的基本解组为,证明其有一特解是,其中及是区间上的连续函数,是的朗斯基行列式。证 已知是对应齐次方程的基本解组,则齐次方程的通解为 。 用常数变易法,求原方程的特解。设 是原方程的特解,则满足下列关系 ,解得,积分得 。原方程的一个特解为 故是原方程的一个特解。证明题:设是常系数线性齐次方程组(1)的解,的分量都是次数的多项式,但至少有一个分量是的次多项式,证明向量组,.,是方程组(1)的线性无关解组。 证: 设是常系数线性齐次方程组 (1)的解,的分量都是次数的多项式,但至少有一个分量是的次多项式,证

3、明向量组,.,是方程组(1)的线性无关的解组。证 先证明,.,都是方程组(1)的解。由于方程组(1)的解,则有,即 其中表示单位矩阵。 由易得 。 (2),由(2),上式变为,。 故,.,都是方程组(1)的解。再证明向量组,.,线性无关。 因为的分量都是次数的多项式,但至少有一个分量是的次多项式,所以,而当时,。 若,即 ,给上式两边关于求阶导数,得,则必有。 给,两边关于求阶导数,则必有。 同理,可得,。故向量组,.,线性无关。 综上所述,我们证明了向量组,.,是方程组(1)的线性无关的解组。证明题:阶齐次线性常微分方程有且最多有个线性无关的解。阶齐次线性常微分方程有且最多有个线性无关的解。

4、证明 :由于阶齐次线性常微分方程分别满足初始条件的解为则一定存在个解,又因为若任取个解由于 即最后一行可由前行线性表出,则=0,故这个解一定是线性相关的。从而命题得证。证明题:设和是二阶线性齐次微分方程的两个线性无关解,求证:它们不能有共同的零点证明:证明 由于和是两个线性无关解,则它们的朗斯基行列式 (*) (5分) 假如它们有共同零点,那么存在一个点,使得 = 于是 这与(*)式矛盾 常微分方程习题集(5)(五)证明题1. 试证:如果是满足初始条件的解,那么.2. 设和是方程的任意两个解,求证:它们的朗斯基行列式,其中为常数3. 假设不是矩阵的特征值,试证非齐线性方程组,有一解形如:,其中

5、是常数向量.4. 设及连续,试证方程为线性方程的充要条件是它有仅依赖与x的积分因子.5. 设在上连续,且,求证:方程的任意解均有.6. 试证:若已知黎卡提方程的一个特解,则可用初等积分法求它的通解.7. 阶齐线性方程一定存在个线性无关解.8. 设是一阶非齐次线性方程于区间上的任一解,是其对应一阶齐次线性方程于区间上的一个非零解。则含有任意常数C的表达式:是一阶非齐次线性方程于区间上的全部解的共同表达式。9. 设矩阵函数,在(a, b)上连续,试证明,若方程组与有相同的基本解组,则。10. 证明: 一个复值向量函数是(LH)的解的充要条件,它的实部和虚部都是(LH)的解。(五)、证明题参考答案

6、1. 试证:如果是满足初始条件的解,那么.证明:因为是的基本解矩阵,是其解,所以存在常向量使得: , 令,则: , 所以 , 故 2. 设和是方程的任意两个解,求证:它们的朗斯基行列式,其中为常数证明:设在区间上连续,由刘维尔公式可知,对任意,它们的朗斯基行列式满足: , 而在方程中,所以 , 即 , 3. 假设不是矩阵的特征值,试证非齐线性方程组,有一解形如:.其中是常数向量.证明:要证是解,就是要证能够确定常数向量,它使得 , 即,成立。 亦即 , 由于不是的特征值,故,从而存在逆矩阵, 那么可取向量 , , 这样方程就有形如的解. 4. 设及连续,试证方程为线性方程的充要条件是它有仅依赖

7、与x的积分因子.证明:先证必要性,设方程为线性方程,即 , 所以 , , 即它有仅依赖与x的积分因子,且 是其积分因子。再证充分性,因为在方程,中所以 , 如果它有仅依赖与的积分因子,则是的函数,设 关于积分得:,是的可微函数,故方程可表为:是线性方程. 5. 设在上连续,且,求证:方程的任意解均有.证明:设为方程的任一解,它满足初始值条件,由常数变易法有:, 于是 = 0 + 6. 试证:若已知黎卡提方程的一个特解,则可用初等积分法求它的通解.证明:设为黎卡提方程的一个特解,则 , 令,则有 整理得: 它是的伯努利方程,可用初等积分法求它的通解. 7. 阶齐线性方程一定存在个线性无关解.证明

8、:设的系数矩阵在区间上连续,任意取定一点和个线性无关的维常向量。 对于每一个,以表示满足初始条件的解向量。 由存在与唯一性定理可知,此解向量在区间上存在且有定义。 由于常向量组是线性无关的,从而向量函数组于区间上线性无关. 8. 设是一阶非齐次线性方程于区间上的任一解,是其对应一阶齐次线性方程于区间上的一个非零解。则含有任意常数的表达式:是一阶非齐次线性方程于区间上的全部解的共同表达式。证明:将直接代入一阶非齐次线性方程可知,对任意常数,都是一阶非齐次线性方程的解。 反之,设是一阶非齐次线性方程的任一解,则是其对应齐次方程的解。 任取,由于是其对应一阶齐次线性方程于区间上的一个非零解,所以。

9、令,则 和都是其对应齐次方程的解,并且在时取相同的值,故由初值问题解的唯一性知,应有,即。9. 设矩阵函数,在(a, b)上连续,试证明,若方程组与在(a, b)上有相同的基本解组,则,.证明:因为方程组与在(a, b)上有相同的基本解组,所以可设是其基本解矩阵。 从而有: , 与 ,成立。 所以 , 又由于是其基本解矩阵,所以,即可逆,故,. 10. 证明: 一个复值向量函数是(LH)的解的充要条件,它的实部和虚部都是(LH)的解。证明:设是的解,是实函数矩阵,则: , 从而 , 所以,且即它的实部和虚部都是(LH)的解。 反之,若,成立。则 , 即向量函数是(LH)的解。 常微分方程期终考

10、试试卷(1)一、 填空题(30%)1、方程有只含的积分因子的充要条件是( )。有只含的积分因子的充要条件是_。、_称为黎卡提方程,它有积分因子_。、_称为伯努利方程,它有积分因子_。、若为阶齐线性方程的个解,则它们线性无关的充要条件是_。、形如_的方程称为欧拉方程。、若和都是的基解矩阵,则和具有的关系是_。、当方程的特征根为两个共轭虚根是,则当其实部为_时,零解是稳定的,对应的奇点称为_。二、计算题()1、若试求方程组的解并求expAt、求方程经过(0,0)的第三次近似解6.求的奇点,并判断奇点的类型及稳定性.三、证明题()、阶齐线性方程一定存在个线性无关解。试卷答案一填空题、 、 、零稳定中

11、心二计算题、解:因为,所以此方程不是恰当方程,方程有积分因子,两边同乘得所以解为 即另外y=0也是解、线性方程的特征方程故特征根 是特征单根,原方程有特解代入原方程A=-B=0 不是特征根,原方程有特解代入原方程B=0 所以原方程的解为、解:解得此时 k=1 由公式expAt= 得、解:方程可化为令则有(*)(*)两边对y求导:即由得即将y代入(*)即方程的 含参数形式的通解为:p为参数又由得代入(*)得:也是方程的解 、解: 、解:由解得奇点(3,-2)令X=x-3,Y=y+2则因为=1+1 0故有唯一零解(0,0)由得故(3,-2)为稳定焦点。三、 证明题由解的存在唯一性定理知:n阶齐线性

12、方程一定存在满足如下条件的n解:考虑从而是线性无关的。常微分方程期终试卷(2)一、填空题 30%1、 形如_的方程,称为变量分离方程,这里.分别为x.y的连续函数。2、 形如_的方程,称为伯努利方程,这里的连续函数.n3、 如果存在常数_对于所有函数称为在R上关于满足利普希兹条件。4、 形如_-的方程,称为欧拉方程,这里5、 设的某一解,则它的任一解_-。二、 计算题40%1、 求方程2、 求方程的通解。3、 求方程的隐式解。 4、 求方程三、 证明题30%1.试验证=是方程组x=x,x=,在任何不包含原点的区间a上的基解矩阵。2.设为方程x=Ax(A为nn常数矩阵)的标准基解矩阵(即(0)=

13、E),证明: (t)=(t- t)其中t为某一值. 常微分方程期终试卷答卷一、 填空题(每空5分)1 2、 z=34、5、二、 计算题(每题10分)1、这是n=2时的伯努利不等式,令z=,算得代入原方程得到,这是线性方程,求得它的通解为z=带回原来的变量y,得到=或者,这就是原方程的解。此外方程还有解y=0.2、解:积分:故通解为:3、解:齐线性方程的特征方程为,故通解为不是特征根,所以方程有形如把代回原方程 于是原方程通解为4、解 三、证明题(每题15分)1、证明:令的第一列为(t)=,这时(t)=(t)故(t)是一个解。同样如果以(t)表示第二列,我们有(t)= (t)这样(t)也是一个解

14、。因此是解矩阵。又因为det=-t故是基解矩阵。2、证明:(1),(t- t)是基解矩阵。 (2)由于为方程x=Ax的解矩阵,所以(t)也是x=Ax的解矩阵,而当t= t时,(t)(t)=E, (t- t)=(0)=E. 故由解的存在唯一性定理,得(t)=(t- t)常微分方程期终试卷(3) 一 . 解下列方程(10%*8=80%)1. 1. 2xylnydx+dy=02. =6-x3. =24. x=+y5. 5. tgydx-ctydy=06. 6. y-x(+)dx-xdy=07一质量为m质点作直线运动,从速度为零的时刻起,有一个和时间成正比(比例系数为)的力作用在它上面,此外质点又受到

15、介质的阻力,这阻力和速度成正比(比例系数为)。试求此质点的速度与时间的关系。8. 已知f(x)=1,x0,试求函数f(x)的一般表达式。 二 证明题(10%*2=20%)9. 试证:在微分方程Mdx+Ndy=0中,如果M、N试同齐次函数,且xM+yN0,则是该方程的一个积分因子。10. 证明:如果已知黎卡提方程的一个特解,则可用初等方法求得它的通解。试题答案:1. 解:=2xlny+2x , =2x,则 =,故方程有积分因子=,原方程两边同乘以得dx+dy=0是恰当方程. d(lny)+ydy=0,两边积分得方程的解为lny+=C。2. 解:1)y=0是方程的特解。2)当y0时,令z=得=z+

16、x. 这是线性方程,解得它的通解为z=代回原来的变量y得方程解为=;y=0.3. 解:令x=u+3, y=v2, 可将原方程变为=,再令z=,得到z+=,即=,分离变量并两端积分得=+lnC即ln+2arctgz=+lnC,ln=2arctgz+lnC 代回原变量得v=C所以,原方程的解为y+2=C.4. 解:将方程改写为 =+ (*) 令u=,得到x=x+ u,则(*)变为x =, 变量分离并两边积分得 arcsinu=ln+lnC, 故方程的解为arcsin=lnCx。5. 解:变量分离 ctgxdy=tgydx, 两边积分得 ln(siny)= ln+C或sinycosx=C (*) 另

17、外,由tgy=0或ctgx=0得 y=k(k=0、1) ,x=t+(t=0、1)也是方程的解。 tgy=0或ctgx=0的解是(*)当C=0时的特殊情况,故原方程的解为sinycosx=C。6. 解:ydx-xdy-x(+)dx=0,两边同除以+得xdx=0,即d(arctg)d=0,故原方程的解为arctg=C。7 解:因为F=ma=m,又F=,即m=(v(0)=0),即=(v(0)=0),解得v=+(t).8 解:令f(x)=y,=,两边求导得=y,即=y,即=dx,两边求积得=2x+C,从而y=,故f(x)= .9. 证明:如M、N都是n次齐次函数,则因为x+y=nM,x+y=nN,故有

18、=0.故命题成立。10. 解:1)先找到一个特解y=。2)令y=+z,化为n=2的伯努利方程。证明:因为y=为方程的解,所以=P(x)+Q(x)+R(x) (1)令y=+z,则有+= P(x)+Q(x)+R(x) (2)(2)(1)得= P(x)+Q(x)z即=2P(x)+Q(x)z+P(x)此为n=2的伯努利方程。常微分方程期终试卷(4)一、填空题1、( )称为变量分离方程,它有积分因子( )。、当()时,方程称为恰当方程,或称全微分方程。、函数称为在矩形域上关于满足利普希兹条件,如果()。、对毕卡逼近序列,。、解线性方程的常用方法有()。、若为齐线性方程的个线性无关解,则这一齐线性方程的所

19、有解可表为()。、方程组()。、若和都是的基解矩阵,则和具有关系:()。、当方程组的特征根为两个共轭虚根时,则当其实部()时,零解是稳定的,对应的奇点称为()。、当方程组的特征方程有两个相异的特征根时,则当()时,零解是渐近稳定的,对应的奇点称为()。当()时,零解是不稳定的,对应的奇点称为()。、若是的基解矩阵,则满足的解()。二、计算题求下列方程的通解。、。、。、求方程通过的第三次近似解。求解下列常系数线性方程。、。、。试求下列线性方程组的奇点,并通过变换将奇点变为原点,进一步判断奇点的类型及稳定性:、。三、证明题。、 、设为方程(为常数矩阵)的标准基解矩阵(即,证明其中为某一值。答案:一

20、、 填空题、形如的方程、存在常数0,对于所有都有使得不等式成立、常数变异法、待定系数法、幂级数解法、拉普拉斯变换法、,其中是任意常数、个线性无关的解称之为的一个基本解组、为非奇异常数矩阵、等于零稳定中心、两根同号且均为负实数稳定结点两根异号或两根同号且均为正实数不稳定鞍点或不稳定结点、二、 计算题、 解:方程可化为令,得由一阶线性方程的求解公式,得所以原方程为:、 解:设,则有,从而,故方程的解为,另外也是方程的解、 解:、 解:对应的特征方程为:,解得所以方程的通解为:、 解:齐线性方程的特征方程为,解得,故齐线性方程的基本解组为:,因为是特征根,所以原方程有形如,代入原方程得,所以,所以原

21、方程的通解为、 解: 解得所以奇点为(经变换,方程组化为因为又所以,故奇点为稳定焦点,所对应的零解为渐近稳定的。三、 证明题、证明:为方程的基解矩阵为一非奇异常数矩阵,所以也是方程的基解矩阵,且也是方程的基解矩阵,且都满足初始条件,所以常微分方程期终考试试卷(5)一 填空题 (30分)1称为一阶线性方程,它有积分因子 ,其通解为 _ 。2函数称为在矩形域上关于满足利普希兹条件,如果 _ 。3 若为毕卡逼近序列的极限,则有_ 。4方程定义在矩形域上,则经过点(0,0)的解的存在区间是 _ 。5函数组的伏朗斯基行列式为 _ 。6若为齐线性方程的一个基本解组,为非齐线性方程的一个特解,则非齐线性方程

22、的所有解可表为 _ 。7若是的基解矩阵,则向量函数= _是的满足初始条件的解;向量函数= _ 是的满足初始条件的解。8若矩阵具有个线性无关的特征向量,它们对应的特征值分别为,那么矩阵= _ 是常系数线性方程组的一个基解矩阵。9满足 _ 的点,称为驻定方程组。二 计算题 (60分)10求方程的通解。11求方程的通解。12求初值问题 的解的存在区间,并求第二次近似解,给出在解的存在区间的误差估计。13求方程的通解。14试求方程组的解 15试求线性方程组的奇点,并判断奇点的类型及稳定性。 三证明题 (10分) 16如果是满足初始条件的解,那么 常微分方程期终考试试卷答案一填空题 (30分) 1 2在

23、上连续,存在,使,对于任意 3 4 5 6 7 8 9二计算题 (60分) 10解: 积分因子 两边同乘以后方程变为恰当方程: 两边积分得: 得: 因此方程的通解为: 11解:令 则 得: 那么 因此方程的通解为: 12解: , 解的存在区间为 即 令 又 误差估计为: 13解: 是方程的特征值, 设 得: 则 得: 因此方程的通解为: 14解: 得 取 得 取 则基解矩阵 因此方程的通解为: 15解: (1,3)是奇点 令 ,那么由 可得: 因此(1,3)是稳定中心三证明题 (10分) 16证明:由定理8可知 又因为 所以 又因为矩阵 所以常微分方程期终考试试卷(6)三 填空题 (共30分,

24、9小题,10个空格,每格3分)。1、 当_时,方程M(x,y)dx+N(x,y)dy=0称为恰当方程,或称全 微分方程。2、_称为齐次方程。3、求=f(x,y)满足的解等价于求积分方程_的连续解。 4、若函数f(x,y)在区域G内连续,且关于y满足利普希兹条件,则方程的解 y=作为的函数在它的存在范围内是_。5、若为n阶齐线性方程的n个解,则它们线性无关的充要条件是_。6、方程组的_称之为的一个基本解组。7、若是常系数线性方程组的基解矩阵,则expAt =_。8、满足_的点(),称为方程组的奇点。9、当方程组的特征根为两个共轭虚根时,则当其实部_时,零解是稳定的,对应的奇点称为_。二、计算题(

25、共6小题,每题10分)。1、求解方程:=2、 2、解方程: (2x+2y-1)dx+(x+y-2)dy=03、讨论方程在怎样的区域中满足解的存在唯一性定理的条件,并求通过点(0,0)的一切解4、求解常系数线性方程:5、试求方程组的一个基解矩阵,并计算6、试讨论方程组 (1)的奇点类型,其中a,b,c为常数,且ac0。三、证明题(共一题,满分10分)。试证:如果满足初始条件的解,那么 常微分方程期末考试答案卷一、 一、 填空题。(30分)1、2、3、y=+4、连续的5、w6、n个线性无关解7、8、X(x,y)=0,Y(x,y)=09、为零 稳定中心二、计算题。(60分)1、解: (x-y+1)d

26、x-(x+3)dy=0 xdx-(ydx+xdy)+dx-dy-3dy=0 即d-d(xy)+dx-3dy=0 所以2、解:,令z=x+y则所以 z+3ln|z+1|=x+, ln=x+z+即3、解: 设f(x,y)= ,则 故在的任何区域上存在且连续, 因而方程在这样的区域中满足解的存在唯一性定理的条件, 显然,是通过点(0,0)的一个解; 又由解得,|y|= 所以,通过点(0,0)的一切解为及|y|=4、解: (1) 齐次方程的通解为x= (2)不是特征根,故取代入方程比较系数得A=,B=-于是 通解为x=+5、解: det()= 所以, 设对应的特征向量为 由 取 所以,= 6、解: 因

27、为方程组(1)是二阶线性驻定方程组,且满足条件 ,故奇点为原点(0,0) 又由det(A-E)=得 所以,方程组的奇点(0,0)可分为以下类型: a,c为实数三、证明题。 (10分)证明: 设的形式为= (1) (C为待定的常向量) 则由初始条件得= 又= 所以,C= 代入(1)得= 即命题得证。常微分方程期终试卷(7)一、选择题1阶线性齐次微分方程基本解组中解的个数恰好是( )个(A) (B)-1 (C)+1 (D)+22李普希兹条件是保证一阶微分方程初值问题解惟一的( )条件(A)充分 (B)必要 (C)充分必要 (D)必要非充分3. 方程过点共有( )个解(A)一 (B)无数 (C)两

28、(D)三4方程( )奇解(A)有一个 (B)有两个 (C)无 (D)有无数个5方程的奇解是( )(A) (B) (C) (D)二、计算题1.x=+y2.tgydx-ctydy=03. 4. 5.三、求下列方程的通解或通积分1.2. 3. 四证明1.设,是方程的解,且满足=0,这里在上连续,试证明:存在常数C使得=C2在方程中,已知,在上连续求证:该方程的任一非零解在平面上不能与x轴相切试卷答案一、选择题1.A 2.B 3.B 4.C 5.D二、计算题1 解:将方程改写为=+(*) 令u=,得到 =x+u,则(*)变为x=, 变量分离并两边积分得 arcsinu=ln+lnC, 故方程的解为ar

29、csin=lnCx。2 解:变量分离 ctgxdy=tgydx, 两边积分得 ln(siny)=-ln+C或sinycosx=C (*) 另外,由tgy=0或ctgx=0得 y=k(k=0、1) ,x=t+(t=0、1)也是方程的解。 tgy=0或ctgx=0的解是(*)当C=0时的特殊情况,故原方程的解为sinycosx=C。3. 方程化为 令,则,代入上式,得 分量变量,积分,通解为 原方程通解为 4解 齐次方程的通解为 令非齐次方程的特解为 代入原方程,确定出 原方程的通解为 +5解 因为,所以原方程是全微分方程 取,原方程的通积分为 即三、求下列方程的通解或通积分1解 当时,分离变量得

30、 等式两端积分得 方程的通积分为 2解 令,则,代入原方程,得 , 当时,分离变量,再积分,得 ,即通积分为: 3解 齐次方程的通解为 令非齐次方程的特解为 代入原方程,确定出 原方程的通解为 + 四证明1.证明 设,是方程的两个解,则它们在上有定义,其朗斯基行列式为 由已知条件,得 故这两个解是线性相关的 由线性相关定义,存在不全为零的常数,使得, 由于,可知否则,若,则有,而,则,这与,线性相关矛盾故 2证明 由已知条件可知,该方程满足解的存在惟一及解的延展定理条件,且任一解的存在区间都是 显然,该方程有零解 假设该方程的任一非零解在x轴上某点处与x轴相切,即有= 0,那么由解的惟一性及该方程有零解可知,这是因为零解也满足初值条件= 0,于是由解的惟一性,有这与是非零解矛盾常微分方程期终试卷(8)一、 填空(每空3分)1、 称为一阶线性方程,它有积分因子 ,其通解为 。2、函数称为在矩形域上关于满足利普希兹条件,如果 。3、若为阶齐线性方程的个解,则它们线性无关的充要条件是 。4、形如 的方程称为欧拉方程。5、若和都是的基解矩阵,则和具有的关系: 。6、若向量函数在域上 ,则方程组的解存在且惟一。7、当方程组的特征根为两个共轭虚根时,则当其实部 ,零解是稳定的,对应的奇点称为 。二、 求下列方程的解1、 (6分)2、 (

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 初中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁