《上思县第一中学校20182019学年高二上学期数学期末模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《上思县第一中学校20182019学年高二上学期数学期末模拟试卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、上思县第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 若命题p:xR,x20,命题q:xR,x,则下列说法正确的是( )A命题pq是假命题B命题p(q)是真命题C命题pq是真命题D命题p(q)是假命题2 已知直线x+y+a=0及圆x2+y2=1交于不同的两点A、B,O是坐标原点,且,那么实数a的取值范围是( )ABCD3 已知双曲线:(,),以双曲线的一个顶点为圆心,为半径的圆被双曲线截得劣弧长为,则双曲线的离心率为( )A B C D4 已知双曲线=1(a0,b0)的渐近线及圆(x2)2+y2=1相切,则双曲线的离心率为( )ABC
2、D5 将函数f(x)=sin2x的图象向右平移个单位,得到函数y=g(x)的图象,则它的一个对称中心是( )ABCD6 若如图程序执行的结果是10,则输入的x的值是( ) A0B10C10D10或107 函数(,)的部分图象如图所示,则 f (0)的值为( )A. B.C. D. 【命题意图】本题考查诱导公式,三角函数的图象和性质,数形结合思想的灵活应用.8 已知等比数列an的公比为正数,且a4a8=2a52,a2=1,则a1=( )AB2CD9 某几何体的三视图如图所示,该几何体的体积是( )ABCD10设集合M=x|x1,P=x|x26x+9=0,则下列关系中正确的是( )AM=PBPMC
3、MPDMP=R11四棱锥的八条棱代表8种不同的化工产品,由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为、的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为( )A96B48C24D012已知直线l平面,直线m平面,有下面四个命题:(1)lm,(2)lm,(3)lm,(4)lm,其中正确命题是( )A(1)及(2)B(1)及(3)C(2)及(4)D(3)及(4)二、填空题13平面内两定点M(0,一2)和N(0,2),动点P(x,y)满足,动点P的轨迹为曲线E,给出以下命题: m,使曲线E过坐标原点; 对m,曲线E及
4、x轴有三个交点; 曲线E只关于y轴对称,但不关于x轴对称; 若P、M、N三点不共线,则 PMN周长的最小值为24; 曲线E上及M,N不共线的任意一点G关于原点对称的另外一点为H,则四边形GMHN 的面积不大于m。 其中真命题的序号是(填上所有真命题的序号)14命题“若a0,b0,则ab0”的逆否命题是(填“真命题”或“假命题”)15函数f(x)=(x3)的最小值为16设为锐角,若sin()=,则cos2=17过椭圆+=1(ab0)的左焦点F1作x轴的垂线交椭圆于点P,F2为右焦点,若F1PF2=60,则椭圆的离心率为18若x,y满足线性约束条件,则z=2x+4y的最大值为三、解答题19(本小题
5、满分10分)已知函数.(1)当时,求不等式的解集;(2)若的解集包含,求的取值范围.20为了解某地区观众对大型综艺活动中国好声音的收视情况,随机抽取了100名观众进行调查,其中女性有55名下面是根据调查结果绘制的观众收看该节目的场数及所对应的人数表:场数91011121314人数10182225205将收看该节目场次不低于13场的观众称为“歌迷”,已知“歌迷”中有10名女性()根据已知条件完成下面的22列联表,并据此资料我们能否有95%的把握认为“歌迷”及性别有关?非歌迷歌迷合计男女合计()将收看该节目所有场次(14场)的观众称为“超级歌迷”,已知“超级歌迷”中有2名女性,若从“超级歌迷”中任
6、意选取2人,求至少有1名女性观众的概率P(K2k)0.050.01k3.8416.635附:K2=21在某大学自主招生考试中,所有选报类志向的考生全部参加了“数学及逻辑”和“阅读及表达”两个科目的考试,成绩分为A,B,C,D,E五个等级某考场考生的两科考试成绩的数据统计如图所示,其中“数学及逻辑”科目的成绩为B的考生有10人()求该考场考生中“阅读及表达”科目中成绩为A的人数;()若等级A,B,C,D,E分别对应5分,4分,3分,2分,1分,求该考场考生“数学及逻辑”科目的平均分;()已知参加本考场测试的考生中,恰有两人的两科成绩均为A在至少一科成绩为A的考生中,随机抽取两人进行访谈,求这两人
7、的两科成绩均为A的概率22在平面直角坐标系xoy中,已知圆C1:(x+3)2+(y1)2=4和圆C2:(x4)2+(y5)2=4(1)若直线l过点A(4,0),且被圆C1截得的弦长为2,求直线l的方程(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别及圆C1和C2相交,且直线l1被圆C1截得的弦长及直线l2被圆C2截得的弦长相等,求所有满足条件的点P的坐标23(本小题满分12分)在ABC中,A,B,C所对的边分别是a、b、c,不等式x2cos C4xsin C60对一切实数x恒成立.(1)求cos C的取值范围;(2)当C取最大值,且ABC的周长为6时,求AB
8、C面积的最大值,并指出面积取最大值时ABC的形状.【命题意图】考查三角不等式的求解以及运用基本不等式、余弦定理求三角形面积的最大值等.24(本题满分12分)为了了解某地区心肺疾病是否及性别有关,在某医院随机地对入院的50人进行了问卷调查,得到了如下的列联表:患心肺疾病患心肺疾病合计男20525女101525合计302050(1)用分层抽样的方法在患心肺疾病的人群中抽6人,其中男性抽多少人?(2)在上述抽取的6人中选2人,求恰有一名女性的概率.(3)为了研究心肺疾病是否及性别有关,请计算出统计量,判断心肺疾病及性别是否有关?下面的临界值表供参考:(参考公式:,其中)上思县第一中学校2018-20
9、19学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】 B【解析】解:xR,x20,即不等式x20有解,命题p是真命题;x0时,x无解,命题q是假命题;pq为真命题,pq是假命题,q是真命题,p(q)是真命题,p(q)是真命题;故选:B【点评】考查真命题,假命题的概念,以及pq,pq,q的真假和p,q真假的关系2 【答案】A【解析】解:设AB的中点为C,则因为,所以|OC|AC|,因为|OC|=,|AC|2=1|OC|2,所以2()21,所以a1或a1,因为1,所以a,所以实数a的取值范围是,故选:A【点评】本题考查直线及圆的位置关系,考查点到直线的距离公式,考查学生的计算
10、能力,属于中档题3 【答案】B 考点:双曲线的性质4 【答案】D【解析】解:双曲线=1(a0,b0)的渐近线方程为 y=x,即xy=0根据圆(x2)2+y2=1的圆心(2,0)到切线的距离等于半径1,可得,1=, =,可得e=故此双曲线的离心率为:故选D【点评】本题考查点到直线的距离公式,双曲线的标准方程,以及双曲线的简单性质的应用,求出的值,是解题的关键5 【答案】D【解析】解:函数y=sin2x的图象向右平移个单位,则函数变为y=sin2(x)=sin(2x);考察选项不难发现:当x=时,sin(2)=0;(,0)就是函数的一个对称中心坐标故选:D【点评】本题是基础题,考查三角函数图象的平
11、移变换,函数的对称中心坐标问题,考查计算能力,逻辑推理能力,常考题型6 【答案】D【解析】解:模拟执行程序,可得程序的功能是计算并输出y=的值,当x0,时x=10,解得:x=10当x0,时x=10,解得:x=10故选:D7 【答案】D【解析】易知周期,.由(),得(),可得,所以,则,故选D.8 【答案】D【解析】解:设等比数列an的公比为q,则q0,a4a8=2a52,a62=2a52,q2=2,q=,a2=1,a1=故选:D9 【答案】A【解析】解:几何体如图所示,则V=,故选:A【点评】本题考查的知识点是由三视图求体积,正确得出直观图是解答的关键10【答案】B【解析】解:P=x|x=3,
12、M=x|x1;PM故选B11【答案】 B【解析】排列、组合的实际应用;空间中直线及直线之间的位置关系【专题】计算题;压轴题【分析】首先分析题目已知由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为、的4个仓库存放这8种化工产品,求安全存放的不同方法的种数首先需要把四棱锥个顶点设出来,然后分析到四棱锥没有公共点的8条棱分4组,只有2种情况然后求出即可得到答案【解答】解:8种化工产品分4组,设四棱锥的顶点是P,底面四边形的个顶点为A、B、C、D分析得到四棱锥没有公共点的8条棱分4组,只有2种情况,(PA、DC;PB、AD;PC、
13、AB;PD、BC)或(PA、BC;PD、AB;PC、AD;PB、DC)那么安全存放的不同方法种数为2A44=48故选B【点评】此题主要考查排列组合在实际中的应用,其中涉及到空间直线及直线之间的位置关系的判断,把空间几何及概率问题联系在一起有一定的综合性且非常新颖12【答案】B【解析】解:直线l平面,l平面,又直线m平面,lm,故(1)正确;直线l平面,l平面,或l平面,又直线m平面,l及m可能平行也可能相交,还可以异面,故(2)错误;直线l平面,lm,m,直线m平面,故(3)正确;直线l平面,lm,m或m,又直线m平面,则及可能平行也可能相交,故(4)错误;故选B【点评】本题考查的知识点是空间
14、中直线及平面之间的位置关系,其中熟练掌握空间中直线及平面位置关系的判定及性质定理,建立良好的空间想像能力是解答本题的关键二、填空题13【答案】 解析:平面内两定点M(0,2)和N(0,2),动点P(x,y)满足|=m(m4),=m(0,0)代入,可得m=4,正确;令y=0,可得x2+4=m,对于任意m,曲线E及x轴有三个交点,不正确;曲线E关于x轴对称,但不关于y轴对称,故不正确;若P、M、N三点不共线,|+|2=2,所以PMN周长的最小值为2+4,正确;曲线E上及M、N不共线的任意一点G关于原点对称的点为H,则四边形GMHN的面积为2SMNG=|GM|GN|sinMGNm,四边形GMHN的面
15、积最大为不大于m,正确故答案为:14【答案】真命题 【解析】解:若a0,b0,则ab0成立,即原命题为真命题,则命题的逆否命题也为真命题,故答案为:真命题【点评】本题主要考查命题的真假判断,根据逆否命题的真假性相同是解决本题的关键15【答案】12 【解析】解:因为x3,所以f(x)0由题意知: =令t=(0,),h(t)=t3t2因为 h(t)=t3t2 的对称轴x=,开口朝上知函数h(t)在(0,)上单调递增,(,)单调递减;故h(t)(0,由h(t)=f(x)=12故答案为:1216【答案】 【解析】解:为锐角,若sin()=,cos()=,sin= sin()+cos()=,cos2=1
16、2sin2=故答案为:【点评】本题主要考查了同角三角函数关系式,二倍角的余弦函数公式的应用,属于基础题17【答案】 【解析】解:由题意知点P的坐标为(c,)或(c,),F1PF2=60,=,即2ac=b2=(a2c2)e2+2e=0,e=或e=(舍去)故答案为:【点评】本题主要考查了椭圆的简单性质,考查了考生综合运用椭圆的基础知识和分析推理的能力,属基础题18【答案】38 【解析】解:作出不等式组对应的平面区域如图:由z=2x+4y得y=x+,平移直线y=x+,由图象可知当直线y=x+经过点A时,直线y=x+的截距最大,此时z最大,由,解得,即A(3,8),此时z=23+48=6+32=32,
17、故答案为:38三、解答题19【答案】(1)或;(2).【解析】试题解析:(1)当时,当时,由得,解得;当时,无解;当时,由得,解得,的解集为或.(2),当时,有条件得且,即,故满足条件的的取值范围为.考点:1、绝对值不等式的解法;2、不等式恒成立问题.20【答案】 【解析】解:()由统计表可知,在抽取的100人中,“歌迷”有25人,从而完成22列联表如下:非歌迷歌迷合计男301545女451055合计7525100将22列联表中的数据代入公式计算,得:K2=3.030因为3.0303.841,所以我们没有95%的把握认为“歌迷”及性别有关()由统计表可知,“超级歌迷”有5人,从而一切可能结果所
18、组成的基本事件空间为=(a1,a2),(a1,a3),(a2,a3),(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)其中ai表示男性,i=1,2,3,bi表示女性,i=1,2由10个等可能的基本事件组成用A表示“任选2人中,至少有1个是女性”这一事件,则A=(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2) ,事件A由7个基本事件组成P(A)= 12【点评】本题考查独立性检验的运用及频率分布直方图的性质,列举法计算事件发生的概率,涉及到的知识点较多,有一定的综合性,难度不
19、大,是高考中的易考题型21【答案】 【解析】解:()因为“数学及逻辑”科目中成绩等级为B的考生有10人,所以该考场有100.25=40人,所以该考场考生中“阅读及表达”科目中成绩等级为A的人数为:40(10.3750.3750.150.025)=400.075=3人;()该考场考生“数学及逻辑”科目的平均分为:=2.9;()因为两科考试中,共有6人得分等级为A,又恰有两人的两科成绩等级均为A,所以还有2人只有一个科目得分为A,设这四人为甲,乙,丙,丁,其中甲,乙是两科成绩都是A的同学,则在至少一科成绩等级为A的考生中,随机抽取两人进行访谈,基本事件空间为:=甲,乙,甲,丙,甲,丁,乙,丙,乙,
20、丁,丙,丁,一共有6个基本事件设“随机抽取两人进行访谈,这两人的两科成绩等级均为A”为事件B,所以事件B中包含的基本事件有1个,则P(B)=【点评】本小题主要考查统计及概率的相关知识,具体涉及到频率分布直方图、平均数及古典概型等内容22【答案】【解析】【分析】(1)因为直线l过点A(4,0),故可以设出直线l的点斜式方程,又由直线被圆C1截得的弦长为2,根据半弦长、半径、弦心距满足勾股定理,我们可以求出弦心距,即圆心到直线的距离,得到一个关于直线斜率k的方程,解方程求出k值,代入即得直线l的方程(2)及(1)相同,我们可以设出过P点的直线l1及l2的点斜式方程,由于两直线斜率为1,且直线l1被
21、圆C1截得的弦长及直线l2被圆C2截得的弦长相等,故我们可以得到一个关于直线斜率k的方程,解方程求出k值,代入即得直线l1及l2的方程【解答】解:(1)由于直线x=4及圆C1不相交;直线l的斜率存在,设l方程为:y=k(x4)(1分)圆C1的圆心到直线l的距离为d,l被C1截得的弦长为2d=1(2分)d=从而k(24k+7)=0即k=0或k=直线l的方程为:y=0或7x+24y28=0(5分)(2)设点P(a,b)满足条件,由题意分析可得直线l1、l2的斜率均存在且不为0,不妨设直线l1的方程为yb=k(xa),k0则直线l2方程为:yb=(xa)(6分)C1和C2的半径相等,及直线l1被圆C1截得的弦长及直线l2被圆C2截得的弦长相等,C1的圆心到直线l1的距离和圆C2的圆心到直线l2的距离相等即=(8分)整理得|1+3k+akb|=|5k+4abk|1+3k+akb=(5k+4abk)即(a+b2)k=ba+3或(ab+8)k=a+b5因k的取值有无穷多个,所以或(10分)解得或这样的点只可能是点P1(,)或点P2(,)(12分)23【答案】【解析】24【答案】【解析】【命题意图】本题综合考查统计中的相关分析、概率中的古典概型,突出了统计和概率知识的交汇,对归纳、分析推理的能力有一定要求,属于中等难度.18 / 18