《通信电路与系统实验报告 19次试验全.doc》由会员分享,可在线阅读,更多相关《通信电路与系统实验报告 19次试验全.doc(146页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、高频电子通信实验讲义通信电路与系统实验报告姓 名: 宋江雪 09024121 专 业: 通信工程 指导老师: 徐小平 2012年5月目 录第一部分实验1 单调谐回路谐振放大器3实验2 双调谐回路谐振放大器11实验3 电容三点式LC振荡器17实验4 石英晶体振荡器28实验5 晶体三极管混频实验32实验6 集成乘法器混频器实验37实验7 中频放大器42实验8 集成乘法器幅度调制电路45实验9 振幅解调器(包络检波、同步检波)56实验10 高频功率放大与发射实验65实验11 变容二极管调频器74实验12 电容耦合回路相位鉴频器78实验13 锁相环频率调制器81实验14 锁相环鉴频器88实验15 自动
2、增益控制(AGC)92实验16 发送部分联试实验96实验17 接收部分联试实验98实验18 发射与接收完整系统的联调100实验19 高频电路开发实验103第二部分实验一 通信原理多种信号的产生105实验二 中央集中控制器系统单元实验112实验三 通信话路终端语音信号传输实验119实验四 脉冲幅度调制(PAM)及系统实验126实验五 脉冲编码调制(PCM)及系统实验134实验1 单调谐回路谐振放大器 、实验准备1做本实验时应具备的知识点:l 放大器静态工作点l LC并联谐振回路l 单调谐放大器幅频特性2做本实验时所用到的仪器:l 单调谐回路谐振放大器模块l 双踪示波器l 万用表l 频率计l 高频
3、信号源二、实验目的1熟悉电子元器件和高频电子线路实验系统;2掌握单调谐回路谐振放大器的基本工作原理;3. 熟悉放大器静态工作点的测量方法; 4熟悉放大器静态工作点和集电极负载对单调谐放大器幅频特性(包括电压增益、通频带、Q值)的影响;5掌握测量放大器幅频特性的方法。三、实验内容1用万用表测量晶体管各点(对地)电压VB、VE、VC,并计算放大器静态工作点;2用示波器测量单调谐放大器的幅频特性;3用示波器观察静态工作点对单调谐放大器幅频特性的影响;4用示波器观察集电极负载对单调谐放大器幅频特性的影响。四、基本原理1单调谐回路谐振放大器原理小信号谐振放大器是通信接收机的前端电路,主要用于高频小信号或
4、微弱信号的线性放大和选频。单调谐回路谐振放大器原理电路如图1-1所示。图中,RB1、RB2、RE用以保证晶体管工作于放大区域,从而放大器工作于甲类。CE是RE的旁路电容,CB、CC是输入、输出耦合电容,L、C是谐振回路,RC是集电极(交流)电阻,它决定了回路Q值、带宽。为了减轻晶体管集电极电阻对回路Q值的影响,采用了部分回路接入方式。图1-1 单调谐回路放大器原理电路145图1-2 单调谐回路谐振放大器实验电路图2单调谐回路谐振放大器实验电路单调谐回路谐振放大器实验电路如图1-2所示。其基本部分与图1-1相同。图中,1C2用来调谐,1K02用以改变集电极电阻,以观察集电极负载变化对谐振回路(包
5、括电压增益、带宽、Q值)的影响。1W01用以改变基极偏置电压,以观察放大器静态工作点变化对谐振回路(包括电压增益、带宽、Q值)的影响。1Q02为射极跟随器,主要用于提高带负载能力。五、实验步骤1实验准备(1)插装好单调谐回路谐振放大器模块,接通实验箱上电源开关,按下模块上开关1K01。(2)接通电源,此时电源指示灯亮。2单调谐回路谐振放大器幅频特性测量测量幅频特性通常有两种方法,即扫频法和点测法。扫频法简单直观,可直接观察到单调谐放大特性曲线,但需要扫频仪。本实验采用点测法,即保持输入信号幅度不变,改变输入信号的频率,测出与频率相对应的单调谐回路揩振放大器的输出电压幅度,然后画出频率与幅度的关
6、系曲线,该曲线即为单调谐回路谐振放大器的幅频特性。步骤如下:(1)1K02置“off“位,即断开集电极电阻1R3,调整1W01使1Q01的基极直流电压为2.5V左右,这样放大器工作于放大状态。高频信号源输出连接到单调谐放大器的输入端(1P01)。示波器CH1接放大器的输入端1TP01,示波器CH2接单调谐放大器的输出端1TP02,调整高频信号源频率为6.3MHZ(用频率计测量),高频信号源输出幅度(峰峰值)为200mv(示波器CH1监测)。调整单调谐放大器的电容1C2,使放大器的输出为最大值(示波器CH2监测)。此时回路谐振于6.3MHZ。比较此时输入输出幅度大小,并算出放大倍数。输入:200
7、mv 输出:8.79v放大倍数8.79/0.2=43.95(2)按照表1-2改变高频信号源的频率(用频率计测量),保持高频信号源输出幅度为200mv(示波器CH1监视),从示波器CH2上读出与频率相对应的单调谐放大器的电压幅值,并把数据填入表1-2。表1-2 输入信号频率f(MHZ)5.45.55.65.75.85.96.06.16.26.36.46.56.66.76.86.97.07.1输出电压幅值U(mv)3.894.415.976.578.2511.119.212.610.18.176.655.774.774.133.613.212.932.81(3)以横轴为频率,纵轴为电压幅值,按照表
8、1-2,画出单调谐放大器的幅频特性曲线。3观察静态工作点对单调谐放大器幅频特性的影响。顺时针调整1W01(此时1W01阻值增大),使1Q01基极直流电压为1.5V,从而改变静态工作点。按照上述幅频特性的测量方法,测出幅频特性曲线。逆时针调整1W01(此时1W01阻值减小),使1Q01基极直流电压为5V,重新测出幅频特性曲线。可以发现:当1W01加大时,由于ICQ减小,幅频特性幅值会减小,同时曲线变“瘦”(带宽减小);而当1W01减小时,由于ICQ加大,幅频特性幅值会加大,同时曲线变“胖”(带宽加大)。输入信号频率(mhz)5.45.55.65.75.85.96.06.16.26.36.46.5
9、6.66.76.86.97.07.1Q01=1.5v输出电压幅值(v)2.362.733.173.854.695.777.7710.810.58.176.335.014.093.452.962.622.322.1Q01=5V输出电压幅值(v)7.298.5710.912.914.014.819.611.89.988.497.296.495.695.054.614.213.893.57U(V)4观察集电极负载对单调谐放大器幅频特性的影响 当放大器工作于放大状态下,按照上述幅频特性的测量方法测出接通与不接通1R3的幅频特性曲线。可以发现:当不接1R3时,集电极负载增大,幅频特性幅值加大,曲线变“瘦
10、”,Q值增高,带宽减小。而当接通1R3时,幅频特性幅值减小,曲线变“胖”,Q值降低,带宽加大。输入信号频率(mhz)5.45.55.65.75.85.96.06.16.26.36.46.56.66.76.86.97.07.1输出电压幅值(v)3.193.333.613.894.094.414.534.494.454.374.174.013.773.493.293.092.892.73六、实验报告要求1对实验数据进行分析,说明静态工作点变化对单调谐放大器幅频特性的影响,并画出相应的幅频特性。答:随着静态工作点(此次特指VBQ)的升高,幅频特性幅值(各频率所对应的幅值)会增大,同时曲线变 “胖”,
11、变平缓,选频特性变差,但同频带变宽(以谐振幅值的0.707为界线)。2对实验数据进行分析,说明集电极负载变化对单调谐放大器幅频特性的影响,并画出相应的幅频特性。 答:当接通1R3时,幅频特性幅值减小,曲线变“胖”,品质因数Q降低,通频带加大。当集电极负载增大时,幅频特性幅值加大,曲线变“瘦”,变陡,品质因数Q增高,通频带减小。3总结由本实验所获得的体会。答:通过这次实验我不仅熟悉了电子元件和高频电子线路冰洁掌握了单调谐回路谐振放大器的基本工作原理,并熟悉了静态工作点和几点肌肤在对付频曲线的影响。静态工作点就是输入信号为零时,电路处于直流工作状态,这些直流电流、电压的数值在三极管特性曲线上表示为
12、一个确定的点,设置静态工作点的目的就是要保证在被放大的交流信号加入电路时,不论是正半周还是负半周都能满足发射结正向偏置,集电结反向偏置的三极管放大状态。 若静态工作点设置的不合适,在对交流信号放大时就可能会出现饱和失真(静态工作点偏高)或截止失真(静态工作点偏低)。 所谓静态工作点,是指当放大电路处于静态时,电路所处的工作状态。在Ic/UCE 图上表现为一个点,即当确定的UCC、RB、RC和晶体管状态下产生的电路工作状态。当其中一项改变时引起IB变化而引起Q点沿着直流负载线上下移动。实验2 双调谐回路谐振放大器 、实验准备1做本实验时应具备的知识点:l 双调谐回路l 电容耦合双调谐回路谐振放大
13、器l 放大器动态范围2做本实验时所用到的仪器:l 双调谐回路谐振放大器模块l 双踪示波器l 万用表l 频率计l 高频信号源二、实验目的1熟悉电子元器件和高频电子线路实验系统; 2熟悉耦合电容对双调谐回路放大器幅频特性的影响; 3了解放大器动态范围的概念和测量方法。三、实验内容 1采用点测法测量双调谐放大器的幅频特性;2用示波器观察耦合电容对双调谐回路放大器幅频特性的影响;3用示波器观察放大器动态范围。四、基本原理1双调谐回路谐振放大器原理顾名思义,双调谐回路是指有两个调谐回路:一个靠近“信源”端(如晶体管输出端),称为初级;另一个靠近“负载”端(如下级输入端),称为次级。两者之间,可采用互感耦
14、合,或电容耦合。与单调谐回路相比,双调谐回路的矩形系数较小,即:它的谐振特性曲线更接近于矩形。电容耦合双调谐回路谐振放大器原理图如图2-1所示。与图1-1相比,两者都采用了分压偏置电路,放大器均工作于甲类,但图2-1中有两个谐振回路:L1、C1组成了初级回路,L2、C2组成了次级回路;两者之间并无互感耦合(必要时,可分别对L1、L2加以屏蔽),而是由电容C3进行耦合,故称为电容耦合。2双调谐回路谐振放大器实验电路双调谐回路谐振放大器实验电路如图2-2所示,其基本部分与图2-1相同。图中,2C04、2C11用来对初、次级回路调谐,2K02用以改变耦合电容数值,以改变耦合程度。2K01用以改变集电
15、极负载。2K03用来改变放大器输入信号,当2K03往上拨时,放大器输入信号为来自天线上的信号,2K03往下拨时放大器的输入信号为直接送入。图 2-2 双调谐回路谐振放大器实验电路五、实验步骤1实验准备在实验箱主板上插上双调谐回路谐振放大器模块。接通实验箱上电源开关,按下模块上开关2K1接通电源,此时电源指示灯点亮。2双调谐回路谐振放大器幅频特性测量本实验仍采用点测法,即保持输入幅度不变,改变输入信号的频率,测出与频率相对应的双调谐放大器的输出幅度,然后画出频率与幅度的关系曲线,该曲线即为双调谐回路放大器的幅频特性(如果有扫频仪,可直接测量其幅频特性曲线)。幅频特性测量2K02往上拨,接通2C0
16、5(4.5P)。高频信号源输出频率6.3MHZ(用频率计测量),幅度300mv,然后用铆孔线接入双调谐放大器的输入端(IN)。2K03往下拨,使高频信号送入放大器输入端。示波器CH1接2TP01,示波器CH2接放大器的输出(2TP02)端。反复调整2C04、2C11使双调谐放大器输出为最大值,此时回路谐振于6.3MHZ。按照表2-1改变高频信号源的频率(用频率计测量),保持高频信号源输出幅度峰峰值为300mv(示波器CH1监视),从示波器CH2上读出与频率相对应的双调谐放大器的幅度值,并把数据填入表2-1。表2-1放大器输入信号频率f(Mhz)5.75.85.96.06.16.26.36.4放
17、大器输出幅度U(mv)95113135199263392501593放大器输入信号频率f(Mhz)6.56.66.76.86.97.07.17.2放大器输出幅度U(mv)612597573562533482421354测出两峰之间凹陷点的频率大致是多少。答:大约为6.4MHZ。以横轴为频率,纵轴为幅度,按照表2-1,画出双调谐放大器的幅频特性曲线。按照上述方法测出耦合电容为2C06(80P)(2K02拨向下方)时幅频特性曲线。3. 放大器动态范围测量2K02拨向下方,接通2C06。高频信号源输出接双调谐放大器的输入端(IN),调整高频信号源频率为6.3MHZ,幅度100mv。2K03拨向下方,
18、使高频信号源输出送入放大器输入端。示波器CH1接2TP01,示波器CH2接双调谐放大器的输出(2TP02)端。按照表2-2放大器输入幅度,改变高频信号源的输出幅度(由CH1监测)。从示波器CH2读取出放大器输出幅度值,并把数据填入表2-2,且计算放大器电压放大倍数值。可以发现,当放大器的输入增大到一定数值时,放大倍数开始下降,输出波形开始畸变(失真)。表2-2放大器输入(mV)100200300400600800100012001400160018002000放大器输出(mV)345497566603659689713744766781832857放大器电压放大倍数3.452.4851.887
19、1.5081.0980.8610.7130.6200.5470.4880.4620.428六、实验报告要求1画出耦合电容为2C05和2C06两种情况下的幅频特性,计算幅值从最大值下降到0.707时的带宽,并由此说明其优缺点。比较单调谐和双调谐在特性曲线上有何不同?电容为2C05,2K02拨向上方电容为2C06,2K02拨向下方放大器输入信号频率f(Mhz)5.75.85.96.06.16.26.36.4放大器输出幅度U(mv)166199273381499583598593放大器输入信号频率f(Mhz)6.56.66.76.86.97.07.17.2放大器输出幅度U(mv)3255225175
20、00492471453377双调谐回路放大器在失谐较小的情况下,曲线比单调谐回路放大器的谐振曲线平坦,当失谐较大时,曲线下降很快,因此,双调谐回路放大器具有较宽的通频带。2画出放大器电压放大倍数与输入电压幅度之间的关系曲线。3当放大器输入幅度增大到一定程度时,输出波形会发生什么变化?为什么?答:当放大器的输入增大到一定数值时,放大倍数开始下降,输出波形开始畸变(失真)。4总结由本实验所获得的体会。答:通过这次试验,我对双调谐回路谐振放大器有了更深刻的认识。对于双调谐回路放大器的谐振回路工作在谐振频率条件下,其通频带比单调谐回路放大器的通频带宽,选频作用明显。与单调谐回路放大器的最大谐振电压增益
21、比较而言,在选用同样的晶体管时,两者的电压增益完全一致,都是晶体管所能提供的最大电压增益。实验3 电容三点式LC振荡器一、实验准备1做本实验时应具备的知识点:l 三点式LC振荡器l 西勒和克拉泼电路l 电源电压、耦合电容、反馈系数、等效Q值对振荡器工作的影响2做本实验时所用到的仪器:l LC振荡器模块l 双踪示波器l 万用表二、实验目的1熟悉电子元器件和高频电子线路实验系统; 2掌握电容三点式LC振荡电路的基本原理,熟悉其各元件功能; 3熟悉静态工作点、耦合电容、反馈系数、等效Q值对振荡器振荡幅度和频率的影响;4熟悉负载变化对振荡器振荡幅度的影响。三、实验电路基本原理1.概述振荡器实质上是满足
22、振荡条件的正反馈放大器。振荡器是指振荡回路是由元件组成的。从交流等效电路可知:由振荡回路引出三个端子,分别接振荡管的三个电极,而构成反馈式自激振荡器,因而又称为三点式振荡器。如果反馈电压取自分压电感,则称为电感反馈振荡器或电感三点式振荡器;如果反馈电压取自分压电容,则称为电容反馈振荡器或电容三点式振荡器。在几种基本高频振荡回路中,电容反馈振荡器具有较好的振荡波形和稳定度,电路形式简单,适于在较高的频段工作,尤其是以晶体管极间分布电容构成反馈支路时其振荡频率可高达几百。2.振荡器的起振条件一个振荡器能否起振,主要取决于振荡电路自激振荡的两个基本条件,即:振幅起振平衡条件和相位平衡条件。3.LC振
23、荡器的频率稳定度频率稳定度表示:在一定时间或一定温度、电压等变化范围内振荡频率的相对变化程度,常用表达式:ff来表示(f为所选择的测试频率;f为振荡频率的频率误差,fff;f和f为不同时刻的f),频率相对变化量越小,表明振荡频率的稳定度越高。由于振荡回路的元件是决定频率的主要因素,所以要提高频率稳定度,就要设法提高振荡回路的标准性,除了采用高稳定和高Q值的回路电容和电感外,其振荡管可以采用部分接入,以减小晶体管极间电容和分布电容对振荡回路的影响,还可采用负温度系数元件实现温度补偿。4.LC振荡器的调整和参数选择以实验采用改进型电容三点振荡电路(西勒电路)为例,交流等效电路如图3-1所示。图3-
24、1 电容三点式LC振荡器交流等效电路(1)静态工作点的调整合理选择振荡管的静态工作点,对振荡器工作的稳定性及波形的好坏,有一定的影响,偏置电路一般采用分压式电路。当振荡器稳定工作时,振荡管工作在非线性状态,通常是依靠晶体管本身的非线性实现稳幅。若选择晶体管进入饱和区来实现稳幅,则将使振荡回路的等效Q值降低,输出波形变差,频率稳定度降低。因此,一般在小功率振荡器中总是使静态工作点远离饱和区,靠近截止区。 (2)振荡频率f的计算 f=式中CT为C1、C2和C3的串联值,因C1(300p)C3(75p),C2(1000P)C3(75p),故CTC3,所以,振荡频率主要由L、C和C3决定。(3)反馈系
25、数F的选择F= 反馈系数F不宜过大或过小,一般经验数据F0.10.5,本实验取F=5.克拉泼和西勒振荡电路图3-2为串联改进型电容三点式振荡电路克拉泼振荡电路。图3-3为并联改进型电容三点式振荡电路西勒振荡电路。图3-2 克拉泼振荡电路 图3-3 西勒振荡电路6电容三点式LC振荡器实验电路 电容三点式LC振荡器实验电路如图3-4所示。图中3K05打到“S”位置(左侧)时图3-4 LC振荡器实验电路为改进型克拉泼振荡电路,打到“P”位置(右侧)时,为改进型西勒振荡电路。3K01、3K02、3K03、3K04控制回路电容的变化。调整3W01可改变振荡器三极管的电源电压。3Q02为射极跟随器。3TP
26、02为输出测量点,3TP01为振荡器直流电压测量点。3W02用来改变输出幅度。四、实验内容 1用示波器观察振荡器输出波形,测量振荡器电压峰峰值VP-P,并以频率计测量振荡频率。 2测量振荡器的幅频特性。 3测量电源电压变化对振荡器频率的影响。五、实验步骤 1实验准备插装好LC振荡器模块,按下开关3K1接通电源,即可开始实验。 2西勒振荡电路幅频特性的测量示波器接3TP02,频率计接振荡器输出口3V01。电位器3W02反时针调到底,使输出最大。开关3K05拨至右侧,此时振荡电路为西勒电路。3K01、3K02、3K03、3K04分别控制3C06(10P)、3C07(50P)、3C08(100P)、
27、3C09(200P)是否接入电路,开关往上拨为接通,往下拨为断开。四个开关接通的不同组合,可以控制电容的变化。例如3K01、3K02往上拨,其接入电路的电容为10P+50P=60P。按照表3-1电容的变化测出与电容相对应的振荡频率和输出电压(峰一峰值VP-P),并将测量结果记于表中。表3-1电容C(pf)1050100150200250300350振荡频率f(MHZ)8.7567.5636.6655.9735.4945.0874.7874.513输出电压VP-P(v)16.617.417.617.015.815.014.213.2注:如果在开关转换过程中使振荡器停振无输出,可调整3W01,使之
28、恢复振荡。 3克拉泼振荡电路幅频特性的测量将开关3K05拨至左侧,振荡电路转换为克拉泼电路。按照上述方法,测出振荡频率和输出电压,并将测量结果记于表3-1中。 4波段覆盖系数的测量波段覆盖即调谐振荡器的频率范围,此范围的大小,通常以波段覆盖系数K表示:测量方法:根据测量的幅频特性,以输出电压最大点的频率为基准,即为一边界频率,再找出输出电压下降至处的频率,即为另一边界频率,如图3-5、图3-6所示,再由公式求出K。 图3-5 图3-6答: 西勒振荡电路 频率最大值Fmax=9.35MHz 频率最小值Fmin=8.89MHzK=Fmax/Fmin=1.05克拉泼振荡电路频率最大值Fmax=13.
29、875MHz 频率最小值Fmin=8.088MHzK=Fmax/Fmin=1.715 5测量电源电压变化对振荡器频率的影响分别将开关3K05打至左测(S)和右侧(P)位置,改变电源电压EC,测出不同EC下的振荡频率。并将测量结果记于表3-2中。其方法是:频率计接振荡器输出3P01,电位器3W02反时计调到底,选定回路电容为50P。即3K02往上拨。用三用表直流电压档测3TP01测量点电压,按照表3-2给出的电压值Ec,调整3W01电位器,分别测出与电压相对应的频率。表中f为改变Ec时振荡频率的偏移,假定Ec=10.5V时 ,f=0,则f=f-f10.5V。表3-2串联(S)EC(V)10.59
30、.58.57.56.55.5F(MHZ)13.71413.73113.75513.77813.82813.873f(mHZ)00.0170.0410.0640.1140.159并联(P)EC(V)10.59.58.57.56.55.5F(MHZ)7.5427.5527.5617.5807.6037.635f(mHZ)00.0100.0190.0380.0610.093 68.8MHZ频率的调整在用各个模块构成无线收、发系统时,需要用到LC振荡器模块,作为接收系统中的本振信号。此时振荡频率需要8.8MHZ左右,如何得到8.8MHZ左右的频率,其方法如下:(1)振荡电路为西勒电路时(3K05往右)
31、,3K01、3K02、3K03、3K04四个开关全部往下拨,此时输出的振荡频率为8.8MHZ左右。如果频率高于8.8MHZ,可将3K01往上拨,这样频率可以降低。(2)振荡电路为克拉泼电路时(3K05往左),3K02、3K03接通(往上拨),此时输出振荡频率为8.8MHz左右。如果频率相差太大,可调整四个开关的位置。六、实验报告1根据测试数据,分别绘制西勒振荡器,克拉泼振荡器的幅频特性曲线,并进行分析比较。西勒振荡器结果分析:CT=C3,C3为3C04,C为可变电容数据表明随着电容的增大,频率降低因为在L,CT基本不变时,C增大f降低,与实验相符。克拉泼振荡器结果分析:1) C1为3C02,C
32、2为3C03,C为可变电容,C为C1,C2,C串联。因c1(300pf),C2(1000pf),故当C从10f到100pf增大时,C值增大较为明显,当C从250pf到350pf增大时,C略有增大。实验数据表示随着电容的增大,频率降低。2) C为10pf时,电路不振荡,因为回路的总电容主要取决于C3和C的并联,C3值很小,当C也很小时,放大器的增益会变小,幅度下降,可能出现停振2根据测试数据,计算频率稳定度,分别绘制克拉泼振荡器、西勒振荡器的曲线。串联(S)EC(V)10.59.58.57.56.55.5F(MHZ)13.71413.73113.75513.77813.82813.873f/fo
33、(mHZ)00.0170.0410.0640.1140.159并联(P)EC(V)10.59.58.57.56.55.5F(MHZ)7.5427.5527.5617.5807.6037.635f/fo(mHZ)00.0100.0190.0380.0610.093西勒频率稳定度曲线 克拉泼频率稳定度曲线3本实验所获提的体会。答:通过实验熟悉了电容三点式LC振荡电路的基本原理和静态工作点,耦合电容,反馈系数,等效Q值对振荡器震荡幅度和频率的影响。用瞬时极性法判断正负反馈时,三极管或运放的输出电压,将在LC并联回路上分配。电容支路是由C1和C2串联后组成,其上电压与电容的容量成反比分配,而在电感三点
34、式振荡电路中是与电感量成正比分配。LC振荡电路主要用来产生高频正弦波信号,电路中的选频网络由电感和电容组成。常见的LC正弦波振荡电路有变压器反馈式LC振荡电路、电感三点式LC振荡电路和电容三点式LC振荡电路,它们的选频网络采用LC并联谐振回路。 LC振荡电路运用了电容跟电感的储能特性,让电磁两种能量交替转化,也就是说电能跟磁能都会有一个最大最小值,也就有了振荡。不过这只是理想情况,实际上所有电子元件都会有损耗,能量在电容跟电感之间互相转化的过程中要么被损耗,要么泄漏出外部,能量会不断减小,所以实际上的LC振荡电路都需要一个放大元件,要么是三极管,要么是集成运放等数电IC,利用这个放大元件,通过
35、各种信号反馈方法使得这个不断被消耗的振荡信号被反馈放大,从而最终输出一个幅值跟频率比较稳定的信号。实验4 石英晶体振荡器、实验准备1做本实验时应具备的知识点:l 石英晶体振荡器l 串联型晶体振荡器l 静态工作点、微调电容、负载电阻对晶体振荡器工作的影响2做本实验时所用到的仪器:l 晶体振荡器模块l 双踪示波器l 频率计l 万用表二、实验目的1熟悉电子元器件和高频电子线路实验系统。 2掌握石英晶体振荡器、串联型晶体振荡器的基本工作原理,熟悉其各元件功能。 3熟悉静态工作点、负载电阻对晶体振荡器工作的影响。4感受晶体振荡器频率稳定度高的特点,了解晶体振荡器工作频率微调的方法。三、实验内容 1用万用
36、表进行静态工作点测量。2用示波器观察振荡器输出波形,测量振荡电压峰-峰值Vp-p,并以频率计测量振荡频率。图4-1 晶体振荡器交流通路3观察并测量静态工作点、负载电阻等因素对晶体振荡器振荡幅度和频率的影响。四、基本原理1晶体振荡器工作原理一种晶体振荡器的交流通路如图4-1所示。图中,若将晶体短路,则L1、C2、C3就构成了典型的电容三点式振荡器(考毕兹电路)。因此,图4-1的电路是一种典型的串联型晶体振荡器电路(共基接法)。若取L1=4.3H、C2=820pF、C3=180pF,则可算得LC并联谐振回路的谐振频率f06MHz,与晶体工作频率相同。图中, C5是耦合(隔直流)电容,R5是负载电阻
37、。很显然,R5越小,负载越重,输出振荡幅度将越小。2晶体振荡器电路图4-2 晶体振荡器实验电路晶体振荡器电路如图4-2所示。图中,4R03、4C02为去耦元件,4C01为旁路电容,并构成共基接法。4W01用以调整振荡器的静态工作点(主要影响起振条件)。4C05为输出耦合电容。4Q02为射随器,用以提高带负载能力。实际上,图4-2电路的交流通路即为图4-1所示的电路。五、实验步骤1实验准备在实验箱主板上插好晶振模块,接通实验箱上电源开关,按下开关4K01,此时电源指示灯点亮。2静态工作点测量改变电位器4W01可改变4Q01的基极电压VB,并改变其发射极电压VE。记下VE的最大、最小值,并计算相应
38、的IEmax、IEmin值(发射极电阻4R04=1K)。答:Umax=3.072v Umin=2.105v Imax=3.072ma Imin=2.105ma3静态工作点变化对振荡器工作的影响 实验初始条件:VEQ=2.5V(调4W01达到)。 调节电位器4W01以改变晶体管静态工作点IE,使其分别为表4.1所示各值,且把示波器探头接到4TP02端,观察振荡波形,测量相应的振荡电压峰-峰值Vp-p,并以频率计读取相应的频率值,填入表4.1。表4.1VEQ(V)2.02.22.42.62.83.0f(MHz)5.9995.9995.9995.99900Vp-p(V)9.778.978.177.1
39、600六、实验报告要求1根据实验测量数据,分析静态工作点(IEQ)对晶体振荡器工作的影响。答:从上表中我们可以看出,随着静态工作点的升高,振荡器的振荡幅度会逐渐变大,频率虽然开始很稳定,但最终会停止振动。2对实验结果进行分析,总结静态工作点、负载电阻等因素对晶体振荡器振荡幅度和频率的影响,并阐述缘由。答:负载电阻越小,负载越重,输出的振荡幅度就越小。因为随着发射极电流的增大,静态工作点提升,集电极电流也会增大,即输出电流增大,在负载一定的情况下,输出振荡幅度就会增大。由于电路本身带负载能力有限,所以负载越重,震荡幅度越小。3对晶体振荡器与LC振荡器之间在静态工作点影响、带负载能力方面作一比较,
40、并分析其原因。答:与LC振荡器比起来,晶体振荡器的频率稳定度(工作点的影响要小)要高(10-210-11),但其带负载能力要差。这都是由于晶体的频稳度高,但其工作时的等效阻抗(输出)较小的缘故。4总结由本实验所获得的体会。答:掌握了石英晶体振荡器,串联型晶体振荡器的基本原理,了解了静态工作点和负载电阻对晶体振荡器的影响。实验5 晶体三极管混频实验一、实验准备1做本实验时应具备的知识点:l 混频的概念l 晶体三极管混频原理l 用模拟乘法器实现混频2.做本实验时所用到的仪器:l 晶体三极管混频模块l LC振荡与射随放大模块l 高频信号源l 双踪示波器二、实验目的1进一步了解三极管混频器的工作原理;
41、2.了解混频器的寄生干扰。三、实验内容1.用示波器观察输入输出波形;2.用频率计测量混频器输入输出频率;3.用示波器观察输入波形为调幅波时的输出波形。四、基本原理混频器的功能是将载波为(高频)的已调波信号不失真地变换为另一载频fi (固定中频)的已调波信号,而保持原调制规律不变。例如在调幅广播接收机中,混频器将中心频率为535-1605KHZ的已调波信号变为中心频率为465KHZ的中频已调波信号。此外,混频器还广泛用于需要进行频率变换的电子系统及仪器中,如频率合成器,外差频率计等。混频器的电路模型如图 5-1所示。混频器常用的非线性器件有二极管、三极管、场效应管和乘法器。本振用于产生一个等幅的高频信号UL ,并与输入信号US经混频器后所产生的差频信号经带通滤波器滤出。目前,高质量的通信接收机广泛采用二极管环形混频器和由差分对管平衡调制器构成的混频器,而在一般接收机(例如广播收音机)中,为了简化电路,还是采用简单的三极管混频器,本实验采用晶体三极管作混频电路实验。图5-2是晶体三极管的混频器电