《北京市一零一中学2013年高中化学竞赛第13讲烃类化学.doc》由会员分享,可在线阅读,更多相关《北京市一零一中学2013年高中化学竞赛第13讲烃类化学.doc(27页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第13讲 烃类化学【竞赛要求】有机化合物基本类型及系统命名。烷、烯、炔、环烃、芳香烃的基本性质及相互转化。异构现象。C=C加成。马可尼科夫规则。取代反应。芳香烃取代反应及定位规则。芳香烃侧链的取代反应和氧化反应。【知识梳理】一、有机化合物的分类和命名(一)有机化合物的分类1、按基本骨架分类(1)脂肪族化合物:分子中碳原子相互结合成碳链或碳环。(2)芳香族化合物:碳原子连接成特殊的芳香环。(3)杂环化合物:这类化合物具有环状结构,但是组成环的原子除碳外,还有氧、硫、氮等其他元素的原子。2、按官能团分类官能团是决定某类化合物的主要性质的原子、原子团或特殊结构。显然,含有相同官能团的有机化合物具有相
2、似的化学性质。表13-1 常见的官能团及相应化合物的类别 CC碳碳双键 烯烃CC碳碳叁键 炔烃卤素原子 X 卤代烃羟基 OH 醇、酚COC醚基 醚CHO醛基 醛 COCOHO羰基 酮等羧基 羧酸CRO酰基 酰基化合物氨基 NH2 胺硝基 NO2 硝基化合物磺酸基 SO3H 磺酸巯基 SH 硫醇、硫酚氰基 CN 腈 (二)有机化合物的命名1、烷烃的命名烷烃通常用系统命名法,其要点如下:(1)直链烷烃根据碳原子数称“某烷”,碳原子数由1到10用甲、乙、丙、丁、戊、己、庚、辛、壬、癸表示,如CH3CH2CH2CH3叫丁烷,自十一起用汉数字表示,如C11H24,叫十一烷。(2)带有支链烷烃的命名原则:
3、A选取主链。从烷烃构造式中,选取含碳原子数最多的碳链为主链,写出相当于这一碳链的直链烷烃的名称。B从最靠近取代基的一端开始,用1、2、3、4对主链进行编号,使取代基编号“依次最小”。C如果有几种取代基时,应依“次序规则”排列。D当具有相同长度的碳链可选做主链时,应选定具有支链数目最多的碳链为主。例如: 2、脂环烃的命名脂环烃分为饱和的脂环烃和不饱和的脂环烃。饱和的脂环烃称为环烷烃,不饱和的脂环烃称环烯烃或环炔烃。它们的命名是在同数目碳原子的开链烃的名称之前加冠词“环”。 连有取代基的环烷烃,命名时使取代基的编号最小。取代的不饱和环烃,要从重键开始编号,并使取代基有较小的位次。 环之间有共同碳原
4、子的多环化合物叫多环烃。根据环中共用碳原子的不同可分为螺环烃和桥环烃。螺环烃分子中两个碳环共有一个碳原子。螺环烃的命名是根据成环碳原子的总数称为螺某烷,在螺字后面的方括号内,用阿拉伯数字标出两个碳环除了共有碳原子以外的碳原子数目,将小的数字排在前面,编号从较小环中与螺原子(共有碳原子)相邻的一个碳原子开始,经过共有碳原子而到较大的环进行编号,在此编号规则基础上使取代基及官能团编号较小。如脂环烃分子中两个或两个以上碳环共有两个或两个以上碳原子的称为桥环烃。桥环烃中多个环共用的两个碳原子称为“桥头碳”,命名使先确定“桥”,并由桥头碳原子之一开始编号,其顺序是先经“大桥”再经“小桥”。环数大写于前,
5、方括号内标出各桥的碳原子数,最后写某烷。如3、含单官能团化合物的命名含单官能团化合物的命名按下列步骤:(1)选择主链:选择含官能团的最长碳链为主链作为母体,称“某烯”、“某炔”、“某醇”、“某醛”、“某酸”等(而卤素、硝基、烷氧基则只作取代基),并标明官能团的位置。(2)编号:从靠近官能团(或取代基)的一端开始编号。(3)词头次序:同支链烷烃,按“次序规则”排列。如: 4、含多官能团的化合物命名含多官能团的化合物按下列步骤命名:(1)选择主链(或母体):开链烃应选择含尽可能多官能团(尽量包含碳碳双键或碳碳三键)的最长碳链为主链(或母体);碳环,芳环,杂环以环核为母体。按表13-2次序优先选择一
6、个主要官能团作词尾,即列在前面的官能团,优先选作词尾。表13-2 引用作词尾和词头的官能团名称 官能团 词 尾 词 头 COHO (某)酸 羧基COROSO3H (某)磺酸 磺基 (某)酸(某)酯 酯基CXO (某)酰卤 卤甲酰基CNH2O (某)酰胺 氨基甲酰基 CN (某)腈 氰基CHO (某)醛 甲酰基CO (某)酮 羰基OH (某)醇 羟基SH (某)醇(或酚) 巯基NH2 (某)胺 氨基= NH (某)亚胺 亚氨基CC (某)烯 双键CC (某)炔 三键 (2)开链烃编号从靠近主要官能团(选为词尾的官能团)的一端编起;碳环化合物,芳香环使主要官能团的编号最低。而苯环上的2 位、3 位
7、、4 位常分别用邻位、间位和对位表示。(3)不选作主要官能团的其他官能团以及取代基一律作词头。其次序排列按“次序规则” 。例如: 醛基( CHO)在羟基(OH)前,所以优先选择 CHO 为主要官能团作词尾称“己醛”, CH2CH3、 OH、 CH3、 Br 作词头,根据“次序规则”,其次序是甲基、乙基、羟基、溴。编号从主要官能团开始,并使取代基位次最小。所以命名为:4 甲基 2 乙基 3 羟基 5 溴己醛。主要官能团是 COOCH3 ,所以叫苯甲酸甲酯。 OH、 NO2作词头,其次序是硝基、羟基。编号从主要官能团开始,并使取代基位次最小。所以命名为:3 硝基 2 羟基苯甲酸。二、烷烃(一)烷烃
8、的组成和结构烷烃的通式为CnH2n+2,其分子中各元素原子间均以单键即 键相结合,其中的碳原子均为sp3杂化形式。由于单键可以旋转,所以烷烃的异构有碳架异构和构象异构(见第16讲 立体化学)。(二)烷烃的物理性质烷烃随着碳原子数增加,其熔点、沸点均呈上升趋势,常温下甲烷至丁烷为气体,戊烷至十六烷为液体,十七以上者为固体,但同碳数的异构烷烃,其溶沸点往往也有很大区别。例如:含五个碳原子的开链烷烃的三个异构体戊烷,2 甲基丁烷和新戊烷,其沸点分别为36.1、25、9,七熔点分别为 130、 160、 17。(三)烷烃的化学性质烷烃从结构上看,没有官能团存在,因而在一般条件下它是很稳定的。只有在特殊
9、条件下,例如光照和强热情况下,烷烃才能发生变化。这些变化包括碳链上的氢原子被取代,碳 碳键断裂,氧化或燃烧。烷烃的化学反应:1、取代反应hhhCH4 +Cl2 CH3Cl + HCl CH3Cl + Cl2 CH2Cl2 + HClhCH2Cl2 + Cl2 CHCl3 + HCl CHCl3 + Cl2 CCl4 + HCl卤素反应的活性次序为:F2 Cl2 Br2 I2对于同一烷烃,不同级别的氢原子被取代的难易程度也不是相同的。大量的实验证明叔氢原子最容易被取代,伯氢原子最难被取代。卤代反应机理:实验证明,甲烷的卤代反应机理为游离基链反应,这种反应的特点是反应过程中形成一个活泼的原子或游离
10、基。其反应过程如下:h(1)链引发:在光照或加热至250 400时,氯分子吸收光能而发生共价键的均裂,产生两个氯原子游离基,使反应引发。Cl2 2Cl(2)链增长:氯原子游离基能量高,反应性能活泼。当它与体系中浓度很高的甲烷分子碰撞时,从甲烷分子中夺取一个氢原子,结果生成了氯化氢分子和一个新的游离基甲基游离基。Cl + CH4 HCl + CH3甲基游离基与体系中的氯分子碰撞,生成一氯甲烷和氯原子游离基。CH3 + Cl2 CH3Cl + Cl反应一步又一步地传递下去,所以称为链反应。CH3Cl + Cl CH2Cl + HCl CH2Cl + Cl2 CH2Cl2 + Cl (3)链终止:随
11、着反应的进行,甲烷迅速消耗,游离基的浓度不断增加,游离基与游离基之间发生碰撞结合生成分子的机会就会增加。Cl + Cl Cl2CH3 + CH3 CH3CH3 CH3 + Cl CH3Cl2、热裂反应500 CH4 + CH2=CHCH3CH3CH2CH2CH3 CH3CH3 + CH2=CH2 CH2=CHCH2CH3 + H2CH3CHCH3CH3AlCl3加热、加压3、异构化反应CH3CH2CH2CH3 4、氧化反应:烷烃很容易燃烧,燃烧时发出光并放出大量的热,生成CO2和 H2O。点燃CH4 + 2O2 CO2 + 2H2O + 热量三、烯烃(一)烯烃的组成和结构烯烃的通式为CnH2n
12、,分子中含碳碳双键,形成双键的两个碳均发生sp2杂化。以乙烯的形成为例:碳原子的1个2s轨道与2个2p轨道进行杂化,组成3个能量完全相等、性质相同的sp2杂化轨道。在形成乙烯分子时,每个碳原子各以2个sp2杂化轨道形成2个碳氢键,再以1个sp2杂化轨道形成碳碳键。5个键都在同一个平面上,2个碳原子未参加杂化的2p轨道,垂直于5个键所在的平面而互相平行。这两个平行的p轨道,侧面重叠,形成一个键。因乙烯分子中的所有原子都在同一个平面上,故乙烯分子为平面分子。由于烯烃的双键可处于碳链的不同位置上,导致了位置异构的出现;由于键不能自由旋转,又导致烯烃存在顺反异构(见第16讲 立体化学)(二)烯烃的性质
13、烯烃的物理性质基本上类似于烷烃,即不溶于水而易溶于非极性溶剂,比重小于水。一般说,四个碳以下的烯为气体,十九个碳以上者为固体。烯烃于烷烃相比,分子中出现了双键官能团。由于双键中的键重叠程度小,容易断裂,故烯烃性质活泼。烯烃的化学反应1、加成反应(1)催化加氢Ni在催化剂作用下,烯烃与氢发生加成反应生成相应的烷烃。CH2=CH2 + H2 CH3CH3(2)加卤素CH2=CH2 + Br2 CH2BrCH2BrCCl4 将乙烯通入溴的四氯化碳溶液中,溴的颜色很快褪去,常用这个反应来检验烯烃。(3)加卤化氢CH2=CH2 + HI CH3CH2I同一烯烃与不同的卤化氢加成时,加碘化氢最容易,加溴化
14、氢次之,加氯化氢最难。(4)加硫酸(加水)烯烃能与浓硫酸反应,生成硫酸氢烷酯。硫酸氢烷酯易溶于硫酸,用水稀释后水解生成醇。工业上用这种方法合成醇,称为烯烃间接水合法。CH3CH=CH2 + H2SO4 CH3CH(OSO3H)CH3 CH3CH(OH)CH3 + H2SO4(5)加次卤酸 烯烃与次卤酸加成,生成 卤代醇。由于次卤酸不稳定,常用烯烃与卤素的水溶液反应。如:CH2=CH2 + HOCl CH2(OH)CH2Cl2、氧化反应(1)被高锰酸钾氧化碱性用碱性冷高锰酸钾稀溶液作氧化剂,反应结果使双键碳原子上各引入一个羟基,生成邻二醇。CH2=CH2 + KMnO4 + H2O CH2(OH
15、)CH2(OH) + MnO2 + KOH若用酸性高锰酸钾溶液氧化烯烃,则反应迅速发生,此时不仅键打开,键也可断裂。双键断裂时,由于双键碳原子连接的烃基不同,氧化产物也不同。CH2=CH2 + KMnO4 + H2SO4 2CO2 + MnO2 CH3CH=CH2 + KMnO4 + H2SO4 CH3COOH + CO2CH3CH=CHCH3 + KMnO4 + H2SO4 2CH3COOHCH3C(CH3)=CHCH3 + KMnO4 + H2SO4 CH3COOH +CH3COCH32、臭氧化在低温时,将含有臭氧的氧气流通入液体烯烃或烯烃的四氯化碳溶液中,臭氧迅速与烯烃作用,生成粘稠状的
16、臭氧化物,此反应称为臭氧化反应。如:CCOOOCCO3+ 臭氧化物在还原剂存在的条件下水解(为了避免生成的醛被过氧化氢继续氧化为羧酸),可以得到醛或酮。例如:C C R H H H C O R H C O H H O3 Zn + C C R H R R C O R H C O R R O3 Zn + 烯烃经臭氧化再水解,分子中的CH2= 部分变为甲醛,RCH= 部分变成醛,R2C= 部分变成酮。这样,可通过测定反应后的生成物而推测原来烯烃的结构。CH 2 CH 2 n CH2CH2 n 3、聚合反应4、 H的活性反应双键是烯烃的官能团,与双键碳原子直接相连的碳原子上的氢,因受双键的影响,表现出
17、一定的活泼性,可以发生取代反应和氧化反应。例如,丙烯与氯气混合,在常温下是发生加成反应,生成1,2二氯丙烷。而在500的高温下,主要是烯丙碳上的氢被取代,生成3氯丙烯。500常温CH3CH=CH2 + Cl2 CH3CHClCH2Cl CH3CH=CH2 + Cl2 CH2ClCH=CH2(三)烯烃加成反应的反应机理1、亲电加成反应机理NaCl水将乙烯通入含溴的氯化钠水溶液,反应产物除了BrCH2CH2Br外,还有少量BrCH2CH2Cl生成,但没有ClCH2CH2Cl.CH2=CH2 + Br2 CH2BrCH2Br + CH2BrCH2ClC C Br Br C C Br + 这一实验表明
18、,乙烯与溴的加成反应,不是简单地将乙烯的双键打开,溴分子分成两个溴原子,同时加到两个碳原子上这样一步完成的。如果是这样的话,则生成物应该只有BrCH2CH2Br,不应该有BrCH2CH2Cl,因Cl 是不能使BrCH2CH2Br转变为BrCH2CH2Cl的。由此可知,乙烯与溴的加成反应不是一步完成的,而是分步进行的。当溴分子接近双键时,由于电子的排斥,使非极性的溴溴键发生极化,离键近的溴原子带部分正电荷,另一溴原子带部分负电荷。带部分正电荷的溴原子对双键的亲电进攻,生成一个缺电子的碳正离子。而碳正离子中,带正电荷的碳原子的空p轨道,可与其邻位碳原子上的溴原子带有末共用电子对的p轨道相互重叠,形
19、成一个环状的溴正离子。可用下式表示:接着溴负离子进攻溴正离子中的一个碳原子,得到加成产物。从上述的反应过程可以看出:(1)在这个有机反应过程中,有离子的生成及其变化,属于离子型反应。(2)两个溴原子的加成是分步进行的,而首先进攻碳碳双键的是溴分子中带部分正电荷的溴原子,在整个反应中,这一步最慢,是决定反应速度的一步。所以这个反应称为亲电性离子型反应,溴在这个反应中作亲电试剂。(3)两个溴原子先后分别加到双键的两侧,属于反式加成。2、马尔科夫尼要夫规则当乙烯与卤化氢加成时,卤原子或氢原子不论加到哪个碳原子上,产物都是相同的。因为乙烯是对称分子。但丙烯与卤化氢加成时,情况就不同了,有可能生成两种加
20、成产物:CH3CH2CH2XCH3CH=CH2 + HX CH3CHXCH3实验证明,丙烯与卤化氢加成时,主要产物是2 卤丙烷。即当不对称烯烃与卤化氢加成时,氢原子主要加到含氢较多的双键碳原子上,这一规律称为马尔科夫尼可夫规则,简称马氏规则。马氏规则可用烯烃的亲电加成反应机理来解释。由于卤化氢是极性分子,带正电荷的氢离子先加到碳碳双键中的一个碳原子上,使碳碳双键中的另一个碳原子形成碳正离子,然后碳正离子再与卤素负离子结合形成卤代烷。其中第一步是决定整个反应速度的一步,在这一步中,生成的碳正离子愈稳定,反应愈容易进行。一个带电体系的稳定性,取决于所带电荷的分布情况,电荷愈分散,体系愈稳定。碳正离
21、子的稳定性也是如此,电荷愈分散,体系愈稳定。以下几种碳正离子的稳定性顺序为:CH3+ CH3CH2+ (CH3)2CH+ (CH3)3C+甲基与氢原子相比,前者是排斥电子的基团。当甲基与带正电荷的中心碳原子相连接时,共用电子对向中心碳原子方向移动,中和了中心碳原子上的部分正电荷,即使中心碳原子的正电荷分散,而使碳正离子稳定性增加。与中心碳原子相连的甲基愈多,碳正离子的电荷愈分散,其稳定性愈高。因此,上述4个碳正离子的稳定性,从左至右,逐步增加。四、炔烃(一)炔烃的组成和结构炔烃的通式为CnH2n2,分子中含碳碳三键,形成三键的两个碳均发生sp杂化。以乙炔为例:两个碳原子采用sp杂化方式,即一个
22、2s轨道与一个2p轨道杂化,组成两个等同的sp杂化轨道,sp杂化轨道的形状与sp2、sp3杂化轨道相似,两个sp杂化轨道的对称轴在一条直线上。两个以sp杂化的碳原子,各以一个杂化轨道相互结合形成碳碳键,另一个杂化轨道各与一个氢原子结合,形成碳氢键,三个键的键轴在一条直线上,即乙炔分子为直线型分子。每个碳原子还有两个末参加杂化的p轨道,它们的轴互相垂直。当两个碳原子的两p轨道分别平行时,两两侧面重叠,形成两个相互垂直的键。由于碳碳三键为直线型,所以炔烃无顺反异构。(二)炔烃的性质炔烃的物理性质与烯烃相似,乙炔、丙炔和丁炔为气体,戊炔以上的低级炔烃为液体,高级炔烃为固体。简单炔烃的沸点、熔点和相对
23、密度比相应的烯烃要高。炔烃难溶于水而易溶于有机溶剂。炔烃中的官能团是碳碳三键。因此三键的结构及其对分子中其他部位的影响,将决定炔烃的化学行为。炔烃的化学反应主要有:催化剂催化剂H21、加成反应Br2(1)催化加氢HCCH + H2 CH2=CH2 CH3CH3(2)加卤素HCCH + Br2 CHBr=CHBr CHBr2CHBr2 虽然炔烃比烯烃更不饱和,但炔烃进行亲电加成却比烯烃难。这是由于sp杂化碳原子的电负性比sp2杂化碳原子的电负性强,因而电子与sp杂化碳原子结合和更为紧密,不容易提供电子与亲电试剂结合,所以叁键的亲电加成反应比双键慢。例如烯烃可使溴的四氯化碳溶液很快褪色,而炔烃却需
24、要一两分钟才能使之褪色。故当分子中同时存在双键和三键时,与溴的加成首先发生在双键上。CHCHCH2C + Br2 CH2BrCHBrCCH (3)加卤化氢CHCH3CHI 炔烃与卤化氢的加成,加碘化氢容易进行,加氯化氢则难进行,一般要在催化剂存在下才能进行。不对称炔烃加卤化氢时,服从马氏规则。例如: + HI CH3CI=CH2 CH3CI2CH3HgCl2在汞盐的催化作用下,乙炔与氯化氢在气相发生加成反应,生成氯乙烯。HCCH + HCl CH2=CHClCH CH3CH2C CHBrCH3CH2CHCH3CH2CH2CH2CHBr2在光或过氧化物的作用下,炔烃与溴化氢的加成反应,得到反马氏
25、规则的加成产物。如:(4)加水在稀酸(10H2SO4)中,炔烃比烯烃容易发生加成反应。例如,在10H2SO4和5硫酸汞溶液中,乙炔与水加成生成乙醛,此反应称为乙炔的水化反应或库切洛夫反应。汞盐是催化剂。HgSO4CHCH3CH2CHgSO4HCCH + H2O CH3CHO其他的炔烃水化得到酮。如 + H2O CH3CH2COCH3(5)加醇碱在碱性条件下,乙炔与乙醇发生加成反应,生成乙烯基乙醚。HCCH + CH3CH2OH CH2=CHOCH2CH32、氧化反应炔烃被高锰酸钾或臭氧氧化时,生成羧酸或二氧化碳。如:酸性RCCH + KMnO4 RCOOH + CO2酸性RCCR + KMnO
26、4 RCOOH + RCOOH3、聚合反应Cu2Cl2CHCCHCH2在不同的催化剂作用下,乙炔可以分别聚合成链状或环状化合物。与烯烃的聚合不同的是,炔烃一般不聚合成高分子化合物。例如,将乙炔通入氯化亚铜和氯化铵的强酸溶液时,可发生二聚或三聚作用。300HCCH + HCCH 乙烯基乙炔在高温下,三个乙炔分子聚合成一个苯分子。3 HCCH C6H6 4、炔化物的生成Na与三键碳原子直接相连的氢原子活泼性较大。因sp杂化的碳原子表现出较大的电负性,使与三键碳原子直接相连的氢原子较之一般的碳氢键,显示出弱酸性,可与强碱、碱金属或某些重金属离子反应生成金属炔化物。乙炔与熔融的钠反应,可生成乙炔钠和乙
27、炔二钠:CHCH + Na HCCNa NaCCNa 液氨丙炔或其它末端炔烃与氨基钠反应,生成炔化钠:RCCH + NaNH2 RCCNa 液氨炔化钠与卤代烃(一般为伯卤代烷)作用,可在炔烃分子中引入烷基,制得一系列炔烃同系物。如:RCCNa + RX RCCR + NaX 末端炔烃与某些重金属离子反应,生成重金属炔化物。例如,将乙炔通入硝酸银的氨溶液或氯化亚铜的氨溶液时,则分别生成白色的乙炔银沉淀和红棕色的乙炔亚铜沉淀:HCCH + Ag(NH3)2NO3 AgCCAg + NH4NO3 + NH3 HCCH + Cu(NH3)2Cl CuCCCu + NH4Cl + NH3 上述反应很灵敏
28、,现象也很明显,常用来鉴别分子中的末端炔烃。利用此反应,也可鉴别末端炔烃和三键在其他位号的炔烃。如:RCCH + Ag(NH3)2NO3 RCCAg RCCR + Ag(NH3)2NO3 不反应 五、二烯烃(一)二烯烃的组成和分类分子中含有两个或两个以上碳碳双键的不饱和烃称为多烯烃。二烯烃的通式为CnH2n2,故二烯烃与同碳数的炔烃互为同分异构体。根据二烯烃中两个双键的相对位置的不同,可将二烯烃分为三类:1、累积二烯烃:两个双键与同一个碳原子相连接,即分子中含有C=C=C结构的二烯烃称为累积二烯烃。例如:丙二烯 CH2=C=CH2 。2、隔离二烯烃:两个双键被两个或两个以上的单键隔开,即分子骨
29、架为C=C(C)nC=C 的二烯烃称为隔离二烯烃。例如,1、4戊二烯 CH2=CHCH2CH=CH2。3、共轭二烯烃:两个双键被一个单键隔开,即分子骨架为C=CC=C的二烯烃为共轭二烯烃。例如,1,3丁二烯 CH2=CHCH=CH2。本讲重点讨论的是共轭二烯烃。(二)共轭二烯烃的结构1,3丁二烯分子中,4个碳原子都是以sp2杂化,它们彼此各以1个sp2杂化轨道结合形成碳碳键,其余的sp2杂化轨道分别与氢原子的s轨道重叠形成6个碳氢键。分子中所有键和全部碳原子、氢原子都在一个平面上。此外,每个碳原子还有1个末参加杂化的与分子平面垂直的p轨道,在形成碳碳键的同时,对称轴相互平行的4个p轨道可以侧面
30、重叠形成一个包含4个碳原子的离域键,也称大键。像这样具有离域键的体系称为共轭体系。在共轭体系中,由于原子间的相互影响,使整个分子电子云的分布趋于平均化的倾向称为共轭效应。由电子离域而体现的共轭效应称为-共轭效应。共轭效应与诱导效应是不相同的。诱导效应是由键的极性所引起的,可沿键传递下去,这种作用是短程的,一般只在和作用中心直接相连的碳原子中表现得最大,相隔一个原子,所受的作用力就很小了。而共轭效应是由于p电子在整个分子轨道中的离域作用所引起的,其作用可沿共轭体系传递。共轭效应不仅表现在使1,3丁二烯分子中的碳碳双键健长增加,碳碳单键健长缩短,单双键趋向于平均化。由于电子离域的结果,使化合物的能
31、量降低,稳定性增加,在参加化学反应时,也体现出与一般烯烃不同的性质。(三)1,3 丁二烯的性质 1、稳定性物质的稳定性取决于分子内能的高低,分子的内能愈低,其分子愈稳定。分子内能的高低,通常可通过测定其氢化热来进行比较。例如:CH2=CHCH2CH=CH2 +2H2 CH3CH2CH2CH2CH3 H = 255kJmol1CH2=CHCH=CHCH3 + 2H2 CH3CH2CH2CH2CH3 H = 227kJmol1从以上两反应式可以看出,虽然1,4-戊二烯与1,3 戊二烯氢化后都得到相同的产物,但其氢化热不同,1,3 戊二烯的氢化热比1,4 戊二烯的氢化热低,即1,3 戊二烯的内能比1
32、,4 戊二烯的内能低,1,3 戊二烯较为稳定。2、亲电加成与烯烃相似,1,3 丁二烯能与卤素、卤化氢和氢气发生加成反应。但由于其结构的特殊性,加成产物通常有两种。例如,1,3 丁二烯与溴化氢的加成反应: CH3CHBrCH=CH2 3溴1丁烯CH2=CHCH=CH2 + HBr CH3CH=CHCH2Br 1溴2丁烯这说明共轭二烯烃与亲电试剂加成时,有两种不同的加成方式。一种是发生在一个双键上的加成,称为1,2加成另一种加成方式是试剂的两部分分别加到共轭体系的两端,即加到C1和C4两个碳原子上,分子中原来的两个双键消失,而在C2与C3之间,形成一个新的双键,称为1,4加成。共轭二烯烃能够发生1
33、,4加成的原因,是由于共轭体系中电子离域的结果。当1,3丁二烯与溴化氢反应时,由于溴化氢极性的影响,不仅使一个双键极化,而且使分子整体产生交替极化。按照不饱和烃亲电加成反应机理,进攻试剂首先进攻交替极化后电子云密度;较大的部位C1和C3,但因进攻C1后生成的碳正离子比较稳定,所以H+ 先进攻C1。 CH2=CHC+HCH3 CH2=CHCH=CH2 + H+ C+H2CH2CH=CH2 CH2CHCHCH34 3 2 1+当H+ 进攻C1时,生成的碳正离子中C2的p轨道与双键可发生共轭,称为p共轭。电子离域的结果使C2上的正电荷分散,这种烯丙基正碳离子是比较稳定的。而碳正离子不能形成共轭体系,
34、所以不如碳正离子稳定。在碳正离子的共轭体系中,由于电子的离域,使C2和C4都带上部分正电荷。200+ CH2=CH2反应的第二步,是带负电荷的试剂Br 加到带正电荷的碳原子上,因C2和C4都带上部分正电荷,所以Br 既可以加到C2上,也可以加到C4上,即发生1,2 加成或1,4 加成。 3、双烯合成100+ CH2=CH2CHOCHO共轭二烯烃与某些具有碳碳双键的不饱和化合物发生1,4-加成反应生成环状化合物的反应称为双烯合成,也叫狄尔斯-阿尔德(Diels-Alder)反应。这是共轭二烯烃特有的反应,它将链状化合物转变成环状化合物,因此又叫环合反应。一般把进行双烯合成的共轭二烯烃称作双烯体,
35、另一个不饱和的化合物称为亲双烯体。实践证明,当亲双烯体的双键碳原子上连有一个吸电子基团时,则反应易于进行。如:4、聚合反应共轭二烯烃在聚合时,既可发生1,2加成聚合,也可发生1,4加成聚合。六、脂环烃(一)脂环烃的分类具有环状结构的碳氢化合物称为环烃,环烃又可分为脂环烃和芳香烃。开链烃两端连接成环的化合物与链烃性质相似,称为脂环烃。按照分子中所含环的多少分为单环和多环脂环烃。根据脂环烃的不饱和程度又分为环烷烃和环烯烃(环炔烃)。在多环烃中,根据环的连接方式不同,又可分为螺环烃和桥环烃。本讲主要讨论环烷烃。(二)环烷烃的组成与结构环烷烃的通式为CnH2n,与同碳数的烯烃互为同分异构体。环烷烃中碳
36、原子的杂化及成键方式与烷烃一样,均为sp3杂化,分子中各元素原子间均以单键即 键相结合。环烷烃中除三元环以外,其他环由于可选择不同构象,均不以平面状存在。(三)环烷烃的性质1、物理性质 环烷烃的沸点、熔点和相对密度均比相同碳原子数的链烃高。2、化学性质(1)卤代反应hCl在高温或紫外线作用下,脂环烃上的氢原子可以被卤素取代而生成卤代脂环烃。如:+ Cl2 + HCl300Br + Br2 + HBr(2)氧化反应不论是小环或大环环烷烃的氧化反应都与烷烃相似,在通常条件下不易发生氧化反应,在室温下它不与高锰酸钾水溶液反应,因此这可作为环烷烃与烯烃、炔烃的鉴别反应。KMnO4H+环烯烃的化学性质与烯烃相同,很容易被氧化开环。 HOOCCH2CH2CH2CH2COOH(3)加成反应小环(三元、四元)不稳定易开环,能与氢气、卤素、卤化氢等发生类似于烯烃的加成反应。加氢 在催化剂作用下,环烷烃加一分子氢生成烷烃。200Ni80Ni + H2 CH3CH2CH3 + H2 CH3CH2CH2CH3 300Ni + H