大学高数公式(14页).doc

上传人:1595****071 文档编号:36122712 上传时间:2022-08-25 格式:DOC 页数:14 大小:372KB
返回 下载 相关 举报
大学高数公式(14页).doc_第1页
第1页 / 共14页
大学高数公式(14页).doc_第2页
第2页 / 共14页
点击查看更多>>
资源描述

《大学高数公式(14页).doc》由会员分享,可在线阅读,更多相关《大学高数公式(14页).doc(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、-大学高数公式-第 14 页大学常用公式导数公式:基本积分表:三角函数的有理式积分:一些初等函数: 两个重要极限:三角函数公式:诱导公式: 函数角Asincostgctg-sincos-tg-ctg90-cossinctgtg90+cos-sin-ctg-tg180-sin-cos-tg-ctg180+-sin-costgctg270-cos-sinctgtg270+-cossin-ctg-tg360-sincos-tg-ctg360+sincostgctg和差角公式: 和差化积公式:倍角公式:半角公式:正弦定理: 余弦定理: 反三角函数性质:高阶导数公式莱布尼兹(Leibniz)公式:中值定

2、理与导数应用:曲率:定积分的近似计算:定积分应用相关公式:空间解析几何和向量代数:多元函数微分法及应用微分法在几何上的应用:方向导数与梯度:多元函数的极值及其求法:重积分及其应用:柱面坐标和球面坐标:曲线积分:曲面积分:高斯公式:斯托克斯公式曲线积分与曲面积分的关系:常数项级数:级数审敛法:绝对收敛与条件收敛:幂级数:函数展开成幂级数:一些函数展开成幂级数:欧拉公式:三角级数:傅立叶级数:周期为的周期函数的傅立叶级数:微分方程的相关概念:一阶线性微分方程:全微分方程:二阶微分方程:二阶常系数齐次线性微分方程及其解法:(*)式的通解两个不相等实根两个相等实根一对共轭复根二阶常系数非齐次线性微分方

3、程三角函数三角函数目录 同角三角函数间的基本关系式: 三角函数的角度换算 正余弦定理 部分高等内容 特殊三角函数值 三角函数的计算 三角函数定义域和值域 初等三角函数导数 三角函数是数学中属于初等函数中的超越函数的一类函数。它们的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。由于三角函数的周期性,它并不具有单值函数意义上的反函数。三角函数在复数中有较为重要的应用。在物理学中,三角函数也是常用的工具。基本初等内容它有

4、六种基本函数(初等基本表示):函数名 正弦 余弦 正切 余切 正割 余割在平面直角坐标系xOy中,从点O引出一条射线OP,设旋转角为,设OP=r,P点的坐标为(x,y)有正弦函数 sin=y/r余弦函数 cos=x/r正切函数 tan=y/x余切函数 cot=x/y正割函数 sec=r/x余割函数 csc=r/y(斜边为r,对边为y,邻边为x。)以及两个不常用,已趋于被淘汰的函数:正矢函数 versin =1-cos余矢函数 covers =1-sin 编辑本段同角三角函数间的基本关系式:平方关系:sin2()+cos2()=1 cos2a=(1+cos2a)/2 tan2()+1=sec2(

5、) sin2a=(1-cos2a)/2cot2()+1=csc2()积的关系:sin=tan*coscos=cot*sintan=sin*sec cot=cos*cscsec=tan*csc csc=sec*cot倒数关系:tancot=1sincsc=1cossec=1 直角三角形ABC中, 角A的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比斜边 正切等于对边比邻边,三角函数恒等变形公式两角和与差的三角函数:cos(+)=coscos-sinsincos(-)=coscos+sinsinsin()=sincoscossintan(+)=(tan+tan)/(1-tantan)tan(

6、-)=(tan-tan)/(1+tantan)三角和的三角函数:sin(+)=sincoscos+cossincos+coscossin-sinsinsincos(+)=coscoscos-cossinsin-sincossin-sinsincostan(+)=(tan+tan+tan-tantantan)/(1-tantan-tantan-tantan)辅助角公式:Asin+Bcos=(A2+B2)(1/2)sin(+t),其中sint=B/(A2+B2)(1/2)cost=A/(A2+B2)(1/2)tant=B/AAsin+Bcos=(A2+B2)(1/2)cos(-t),tant=A/

7、B倍角公式:sin(2)=2sincos=2/(tan+cot)cos(2)=cos2()-sin2()=2cos2()-1=1-2sin2()tan(2)=2tan/1-tan2()三倍角公式:sin(3)=3sin-4sin3()cos(3)=4cos3()-3cos半角公式:sin(/2)=(1-cos)/2)cos(/2)=(1+cos)/2)tan(/2)=(1-cos)/(1+cos)=sin/(1+cos)=(1-cos)/sin降幂公式sin2()=(1-cos(2)/2=versin(2)/2cos2()=(1+cos(2)/2=covers(2)/2tan2()=(1-co

8、s(2)/(1+cos(2)万能公式:sin=2tan(/2)/1+tan2(/2)cos=1-tan2(/2)/1+tan2(/2)tan=2tan(/2)/1-tan2(/2)积化和差公式:sincos=(1/2)sin(+)+sin(-)cossin=(1/2)sin(+)-sin(-)coscos=(1/2)cos(+)+cos(-)sinsin=-(1/2)cos(+)-cos(-)和差化积公式: sin+sin=2sin(+)/2cos(-)/2sin-sin=2cos(+)/2sin(-)/2cos+cos=2cos(+)/2cos(-)/2cos-cos=-2sin(+)/2s

9、in(-)/2推导公式tan+cot=2/sin2tan-cot=-2cot21+cos2=2cos21-cos2=2sin21+sin=(sin/2+cos/2)2其他:sin+sin(+2/n)+sin(+2*2/n)+sin(+2*3/n)+sin+2*(n-1)/n=0cos+cos(+2/n)+cos(+2*2/n)+cos(+2*3/n)+cos+2*(n-1)/n=0 以及sin2()+sin2(-2/3)+sin2(+2/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0cosx+cos2x+.+cosnx= sin(n+1)x+sinnx-

10、sinx/2sinx证明:左边=2sinx(cosx+cos2x+.+cosnx)/2sinx=sin2x-0+sin3x-sinx+sin4x-sin2x+.+ sinnx-sin(n-2)x+sin(n+1)x-sin(n-1)x/2sinx (积化和差)=sin(n+1)x+sinnx-sinx/2sinx=右边等式得证sinx+sin2x+.+sinnx= - cos(n+1)x+cosnx-cosx-1/2sinx证明:左边=-2sinxsinx+sin2x+.+sinnx/(-2sinx)=cos2x-cos0+cos3x-cosx+.+cosnx-cos(n-2)x+cos(n+

11、1)x-cos(n-1)x/(-2sinx)=- cos(n+1)x+cosnx-cosx-1/2sinx=右边等式得证 编辑本段三角函数的角度换算公式一: 设为任意角,终边相同的角的同一三角函数的值相等: sin(2k)sin cos(2k)cos tan(2k)tan cot(2k)cot 公式二: 设为任意角,+的三角函数值与的三角函数值之间的关系: sin()sin cos()cos tan()tan cot()cot 公式三: 任意角与 -的三角函数值之间的关系: sin()sin cos()cos tan()tan cot()cot 公式四: 利用公式二和公式三可以得到-与的三角函

12、数值之间的关系: sin()sin cos()cos tan()tan cot()cot 公式五: 利用公式一和公式三可以得到2-与的三角函数值之间的关系: sin(2)sin cos(2)cos tan(2)tan cot(2)cot 公式六: /2及3/2与的三角函数值之间的关系: sin(/2)cos cos(/2)sin tan(/2)cot cot(/2)tan sin(/2)cos cos(/2)sin tan(/2)cot cot(/2)tan sin(3/2)cos cos(3/2)sin tan(3/2)cot cot(3/2)tan sin(3/2)cos cos(3/2)

13、sin tan(3/2)cot cot(3/2)tan (以上kZ) 编辑本段正余弦定理正弦定理是指在一个三角形中,各边和它所对的角的正弦的比相等,即a/sinA=b/sinB=c/sinC=2R 余弦定理是指三角形中任何一边的平方等于其它两边的平方和减去这两边与它们夹角的余弦的积的2倍,即a2=b2+c2-2bc cosA 编辑本段部分高等内容高等代数中三角函数的指数表示(由泰勒级数易得):sinx=e(ix)-e(-ix)/(2i)cosx=e(ix)+e(-ix)/2tanx=e(ix)-e(-ix)/ie(ix)+ie(-ix)泰勒展开有无穷级数,ez=exp(z)1z/1!z2/2!

14、z3/3!z4/4!zn/n! 此时三角函数定义域已推广至整个复数集。三角函数作为微分方程的解:对于微分方程组 y=-y;y=y,有通解Q,可证明Q=Asinx+Bcosx,因此也可以从此出发定义三角函数。补充:由相应的指数表示我们可以定义一种类似的函数双曲函数,其拥有很多与三角函数的类似的性质,二者相映成趣。 编辑本段特殊三角函数值a 0 30 45 60 90sina 0 1/2 2/2 3/2 1cosa 1 3/2 2/2 1/2 0tana 0 3/3 1 3 Nonecota None 3 1 3/3 0 编辑本段三角函数的计算幂级数 c0+c1x+c2x2+.+cnxn+.=cn

15、xn (n=0.) c0+c1(x-a)+c2(x-a)2+.+cn(x-a)n+.=cn(x-a)n (n=0.)它们的各项都是正整数幂的幂函数, 其中c0,c1,c2,.及a都是常数, 这种级数称为幂级数.泰勒展开式(幂级数展开法):f(x)=f(a)+f(a)/1!*(x-a)+f(a)/2!*(x-a)2+.f(n)(a)/n!*(x-a)n+.实用幂级数:ex = 1+x+x2/2!+x3/3!+.+xn/n!+.ln(1+x)= x-x2/3+x3/3-.(-1)k-1*xk/k+. (|x|1)sin x = x-x3/3!+x5/5!-.(-1)k-1*x2k-1/(2k-1)

16、!+. (-x)cos x = 1-x2/2!+x4/4!-.(-1)k*x2k/(2k)!+. (-x)arcsin x = x + 1/2*x3/3 + 1*3/(2*4)*x5/5 + . (|x|1)arccos x = - ( x + 1/2*x3/3 + 1*3/(2*4)*x5/5 + . ) (|x|1)arctan x = x - x3/3 + x5/5 - . (x1)sinh x = x+x3/3!+x5/5!+.(-1)k-1*x2k-1/(2k-1)!+. (-x)cosh x = 1+x2/2!+x4/4!+.(-1)k*x2k/(2k)!+. (-x)arcsin

17、h x = x - 1/2*x3/3 + 1*3/(2*4)*x5/5 - . (|x|1)arctanh x = x + x3/3 + x5/5 + . (|x|1)在解初等三角函数时,只需记住公式便可轻松作答,在竞赛中,往往会用到与图像结合的方法求三角函数值、三角函数不等式、面积等等。傅立叶级数(三角级数) f(x)=a0/2+(n=0.) (ancosnx+bnsinnx) a0=1/(.-) (f(x)dxan=1/(.-) (f(x)cosnx)dxbn=1/(.-) (f(x)sinnx)dx三角函数的数值符号正弦第一,二象限为正,第三,四象限为负余弦第一,四象限为正第二,三象限为负正切第一,三象限为正第二,四象限为负 编辑本段三角函数定义域和值域sin(x),cos(x)的定义域为R,值域为-1,1 tan(x)的定义域为x不等于/2+k,值域为R cot(x)的定义域为x不等于k,值域为R 编辑本段初等三角函数导数y=sinx-y=cosx y=cosx-y=-sinx y=tanx-y=1/(cosx)2 y=cotx-y=-1/(sinx)2 y=arcsinx-y=1/1-x2 y=arccosx-y=-1/1-x2 y=arctanx-y=1/(1+x2) y=arccotx-y=-1/(1+x2)

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 单元课程

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁