实验三:A星算法求解8数码问题实验(18页).doc

上传人:1595****071 文档编号:36115409 上传时间:2022-08-25 格式:DOC 页数:18 大小:232KB
返回 下载 相关 举报
实验三:A星算法求解8数码问题实验(18页).doc_第1页
第1页 / 共18页
实验三:A星算法求解8数码问题实验(18页).doc_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《实验三:A星算法求解8数码问题实验(18页).doc》由会员分享,可在线阅读,更多相关《实验三:A星算法求解8数码问题实验(18页).doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、-实验三:A星算法求解8数码问题实验-第 18 页实验三:A*算法求解8数码问题实验一、 实验目的熟悉和掌握启发式搜索的定义、估价函数和算法过程,并利用A*算法求解N数码难题,理解求解流程和搜索顺序。二、 实验内容1、 八数码问题描述所谓八数码问题起源于一种游戏:在一个33的方阵中放入八个数码1、2、3、4、5、6、7、8,其中一个单元格是空的。将任意摆放的数码盘(城初始状态)逐步摆成某个指定的数码盘的排列(目标状态),如图1所示图1 八数码问题的某个初始状态和目标状态对于以上问题,我们可以把数码的移动等效城空格的移动。如图1的初始排列,数码7右移等于空格左移。那么对于每一个排列,可能的一次数

2、码移动最多只有4中,即空格左移、空格右移、空格上移、空格下移。最少有两种(当空格位于方阵的4个角时)。所以,问题就转换成如何从初始状态开始,使空格经过最小的移动次数最后排列成目标状态。2、 八数码问题的求解算法2.1 盲目搜索 宽度优先搜索算法、深度优先搜索算法2.2 启发式搜索 启发式搜索算法的基本思想是:定义一个评价函数f,对当前的搜索状态进行评估,找出一个最有希望的节点来扩展。 先定义下面几个函数的含义: f*(n)=g*(n)+h*(n) (1) 式中g*(n)表示从初始节点s到当前节点n的最短路径的耗散值;h*(n)表示从当前节点n到目标节点g的最短路径的耗散值,f*(n)表示从初始

3、节点s经过n到目标节点g的最短路径的耗散值。 评价函数的形式可定义如(2)式所示: f(n)=g(n)+h(n) (2)其中n是被评价的当前节点。f(n)、g(n)和h(n)分别表示是对f*(n)、g*(n)和h*(n)3个函数值的估计值。利用评价函数f(n)=g(n)+h(n)来排列OPEN表节点顺序的图搜索算法称为算法A。在A算法中,如果对所有的x, h(x)=h*(x) (3)成立,则称好h(x)为h*(x)的下界,它表示某种偏于保守的估计。采用h*(x)的下界h(x)为启发函数的A算法,称为A*算法。针对八数码问题启发函数设计如下:f(n)=d(n)+p(n) (4)其中A*算法中的g

4、(n)根据具体情况设计为d(n),意为n节点的深度,而h(n)设计为 把S放入OPEN表,记f=hOPEN=NULL?是失败扩展BESTNODE,产生其后继结点SUCCESSOR选取OPEN表上未设置过的具有最小f值的节点BESTNODE,放入CLOSED表BESTNODE是目标节点建立从SUCCESSOR返回BESTNODE的指针计算g(SUC)=g(BES)+k(BES,SUC)SUCOPEN开始g(SUC)g(OLD)SUC=OLD,把它添加到BESTNDOE的后继结点表中重新确定OLD的父辈节点为BESTNODE,并修正父辈节点的g值和f值,记下g(OLD)是成功SUCCLOSED把S

5、UCCESSOR放入OPEN表,添进BESTNODE的后裔表计算f值是否是否是否否否 图2 A*算法流程图p(n),意为放错的数码与正确的位置距离之和。由于实际情况中,一个将牌的移动都是单步进行的,没有交换拍等这样的操作。所以要把所有的不在位的将牌,移动到各自的目标位置上,至少要移动从他们各自的位置到目标位置的距离和这么多次,所以最有路径的耗散值不会比该值小,因此该启发函数h(n)满足A*算法的条件。3、 A*算法流程图,如图24、 A*算法总结4.1,把起始状态添加到开启列表。4.2,重复如下工作: a) 寻找开启列表中f值最低的节点,我们称它为BESTNOE b) 把它切换到关闭列表中。

6、c) 对相邻的4个节点中的每一个 *如果它不在开启列表,也不在关闭列表,把它添加到开启列表中。把BESTNODE作为这一节点的父节点。记录这一节点的f和g值 *如果它已在开启或关闭列表中,用g值为参考检查新的路径是否更好。更低的g值意味着更好的路径。如果这样,就把这一节点的父节点改为BESTNODE,并且重新计算这一节点的f和g值,如果保持开启列表的f值排序,改变之后需要重新对开启列表排序。d) 停止 把目标节点添加到关闭列表,这时候路径被找到,或者没有找到路径,开启列表已经空了,这时候路径不存在。 4.3,保存路径。从目标节点开始,沿着每一节点的父节点移动直到回到起始节点。这就是求得的路径。

7、5、数据结构 采用结构体来保存八数码的状态、f和g的值以及该节点的父节点; struct Node int s33;/保存八数码状态,0代表空格 int f,g;/启发函数中的f和g值 struct Node * next; struct Node *previous;/保存其父节点6、实验结果,如图3所示图3 A*算法求解八数码问题实验结果7、源代码/代码:利用A*算法求解八数码问题。/八数码问题的启发函数设计为:f(n)=d(n)+p(n),其中A*算法中的g(n)根据具体情况设计为d(n),意为n节点的深度,而h(n)设计为p(n),意为放错的数码与正确的位置距离之和。/后继结点的获取:

8、数码的移动等效为空格的移动。首先判断空格上下左右的可移动性,其次移动空格获取后继结点。#include#include#include/八数码状态对应的节点结构体struct Node int s33;/保存八数码状态,0代表空格 int f,g;/启发函数中的f和g值 struct Node * next; struct Node *previous;/保存其父节点int open_N=0; /记录Open列表中节点数目/八数码初始状态int inital_s33= 2,8,3, 1,6,4, 7,0,5/八数码目标状态int final_s33= 1,2,3, 8,0,4, 7,6,5/添

9、加节点函数入口,方法:通过插入排序向指定表添加void Add_Node( struct Node *head, struct Node *p) struct Node *q; if(head-next)/考虑链表为空 q = head-next; if(p-f next-f)/考虑插入的节点值比链表的第一个节点值小 p-next = head-next; head-next = p; else while(q-next)/考虑插入节点x,形如a= x f f |q-f = p-f) & (q-next-f p-f | q-next-f = p-f) p-next = q-next; q-ne

10、xt = p; break; q = q-next; if(q-next = NULL) /考虑插入的节点值比链表最后一个元素的值更大 q-next = p; else head-next = p;/删除节点函数入口void del_Node(struct Node * head, struct Node *p ) struct Node *q; q = head; while(q-next) if(q-next = p) q-next = p-next; p-next = NULL; if(q-next = NULL) return; / free(p); q = q-next;/判断两个数

11、组是否相等函数入口int equal(int s133, int s233) int i,j,flag=0; for(i=0; i 3 ; i+) for(j=0; jnext; int flag = 0; while(q) if(equal(q-s,s) flag=1; Old_Node-next = q; return 1; else q = q-next; if(!flag) return 0;/计算p(n)的函数入口/其中p(n)为放错位的数码与其正确的位置之间距离之和/具体方法:放错位的数码与其正确的位置对应下标差的绝对值之和int wrong_sum(int s33) int i,

12、j,fi,fj,sum=0; for(i=0 ; i3; i+) for(j=0; j3; j+) for(fi=0; fi3; fi+) for(fj=0; fj3; fj+) if(final_sfifj = sij) sum += fabs(i - fi) + fabs(j - fj); break; return sum;/获取后继结点函数入口/检查空格每种移动的合法性,如果合法则移动空格得到后继结点int get_successor(struct Node * BESTNODE, int direction, struct Node *Successor)/扩展BESTNODE,产生

13、其后继结点SUCCESSOR int i,j,i_0,j_0,temp; for(i=0; i3; i+) for(j=0; jsij = BESTNODE-sij;/获取空格所在位置 for(i=0; i3; i+) for(j=0; jsij = 0)i_0 = i; j_0 = j;break; switch(direction) case 0: if(i_0-1)-1 ) temp = Successor-si_0j_0; Successor-si_0j_0 = Successor-si_0-1j_0; Successor-si_0-1j_0 = temp; return 1; els

14、e return 0; case 1: if(j_0-1)-1) temp = Successor-si_0j_0; Successor-si_0j_0 = Successor-si_0j_0-1; Successor-si_0j_0-1 = temp; return 1; else return 0; case 2: if( (j_0+1)si_0j_0; Successor-si_0j_0 = Successor-si_0j_0+1; Successor-si_0j_0+1 = temp; return 1; else return 0; case 3: if(i_0+1)si_0j_0;

15、 Successor-si_0j_0 = Successor-si_0+1j_0; Successor-si_0+1j_0 = temp; return 1; else return 0;/从OPen表获取最佳节点函数入口struct Node * get_BESTNODE(struct Node *Open) return Open-next;/输出最佳路径函数入口void print_Path(struct Node * head) struct Node *q, *q1,*p; int i,j,count=1; p = (struct Node *)malloc(sizeof(struc

16、t Node); /通过头插法变更节点输出次序 p-previous = NULL; q = head; while(q) q1 = q-previous; q-previous = p-previous; p-previous = q; q = q1; q = p-previous; while(q) if(q = p-previous)printf(八数码的初始状态:n); else if(q-previous = NULL)printf(八数码的目标状态:n); else printf(八数码的中间态%dn,count+); for(i=0; i3; i+) for(j=0; jsij)

17、; if(j = 2)printf(n); printf(f=%d, g=%dnn,q-f,q-g); q = q-previous;/A*子算法入口:处理后继结点void sub_A_algorithm(struct Node * Open, struct Node * BESTNODE, struct Node * Closed,struct Node *Successor) struct Node * Old_Node = (struct Node *)malloc(sizeof(struct Node); Successor-previous = BESTNODE;/建立从succes

18、sor返回BESTNODE的指针 Successor-g = BESTNODE-g + 1;/计算后继结点的g值/检查后继结点是否已存在于Open和Closed表中,如果存在:该节点记为old_Node,比较后继结点的g值和表中old_Node节点/g值,前者小代表新的路径比老路径更好,将Old_Node的父节点改为BESTNODE,并修改其f,g值,后者小则什么也不做。/即不存在Open也不存在Closed表则将其加入OPen表,并计算其f值 if( exit_Node(Open, Successor-s, Old_Node) ) if(Successor-g g) Old_Node-nex

19、t-previous = BESTNODE;/将Old_Node的父节点改为BESTNODE Old_Node-next-g = Successor-g;/修改g值 Old_Node-next-f = Old_Node-g + wrong_sum(Old_Node-s);/修改f值 /排序 del_Node(Open, Old_Node); Add_Node(Open, Old_Node); else if( exit_Node(Closed, Successor-s, Old_Node) if(Successor-g g) Old_Node-next-previous = BESTNODE;

20、 Old_Node-next-g = Successor-g; Old_Node-next-f = Old_Node-g + wrong_sum(Old_Node-s); /排序 del_Node(Closed, Old_Node); Add_Node(Closed, Old_Node); else Successor-f = Successor-g + wrong_sum(Successor-s); Add_Node(Open, Successor); open_N+;/A*算法入口/八数码问题的启发函数为:f(n)=d(n)+p(n)/其中A*算法中的g(n)根据具体情况设计为d(n),意

21、为n节点的深度,而h(n)设计为p(n),/意为放错的数码与正确的位置距离之和void A_algorithm(struct Node * Open, struct Node * Closed) /A*算法 int i,j; struct Node * BESTNODE, *inital, * Successor; inital = (struct Node * )malloc(sizeof(struct Node); /初始化起始节点 for(i=0; i3; i+) for(j=0; jsij = inital_sij; inital-f = wrong_sum(inital_s); in

22、ital-g = 0; inital-previous = NULL; inital-next = NULL; Add_Node(Open, inital);/把初始节点放入OPEN表 open_N+; while(1) if(open_N = 0)printf(failure!); return; else BESTNODE = get_BESTNODE(Open);/从OPEN表获取f值最小的BESTNODE,将其从OPEN表删除并加入CLOSED表中 del_Node(Open, BESTNODE); open_N-; Add_Node(Closed, BESTNODE); if(equ

23、al(BESTNODE-s, final_s) /判断BESTNODE是否为目标节点 printf(success!n); print_Path(BESTNODE); return; /针对八数码问题,后继结点Successor的扩展方法:空格(二维数组中的0)上下左右移动, /判断每种移动的有效性,有效则转向A*子算法处理后继节点,否则进行下一种移动 else Successor = (struct Node * )malloc(sizeof(struct Node); Successor-next = NULL; if(get_successor(BESTNODE, 0, Successo

24、r)sub_A_algorithm( Open, BESTNODE, Closed, Successor); Successor = (struct Node * )malloc(sizeof(struct Node); Successor-next = NULL; if(get_successor(BESTNODE, 1, Successor)sub_A_algorithm( Open, BESTNODE, Closed, Successor); Successor = (struct Node * )malloc(sizeof(struct Node); Successor-next =

25、NULL; if(get_successor(BESTNODE, 2, Successor)sub_A_algorithm( Open, BESTNODE, Closed, Successor); Successor = (struct Node * )malloc(sizeof(struct Node); Successor-next = NULL; if(get_successor(BESTNODE, 3, Successor)sub_A_algorithm( Open, BESTNODE, Closed, Successor);/main()函数入口/定义Open和Closed列表。Op

26、en列表:保存待检查节点。Closed列表:保存不需要再检查的节点void main() struct Node * Open = (struct Node * )malloc(sizeof(struct Node); struct Node * Closed = (struct Node * )malloc(sizeof(struct Node); Open-next = NULL ; Open-previous = NULL; Closed-next =NULL; Closed-previous = NULL; A_algorithm(Open, Closed);三、 实验体会通过这次实验,使我对启发式搜索算法有了更进一步的理解,特别是估计函数h(n)所起到的巨大重用。一个好的估计函数对于启发式搜索算法来说是十分关键的。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 单元课程

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁