《基因工程原理(17页).doc》由会员分享,可在线阅读,更多相关《基因工程原理(17页).doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、-基因工程原理-第 17 页基因工程原理内容提要1. 基因工程又称基因操作、重组DNA技术, 是P. Berg等于1972年创建的。基因工程技术涉及的基本过程包括“切、连、转、选”。该技术有两个基本的特点分子水平上的操作和细胞水平上的表达。 2. 基因工程中使用多种工具酶,包括限制性内切核酸酶、DNA连接酶和其他一些参与DNA合成与修饰的酶类。 3. 限制性内切核酸酶是基因工程中最重要的工具酶,属于水解酶类。根据限制性内切核酸酶的作用特点,被分为三大类。类限制性内切核酸酶是基因工程中最常用的酶,该类酶的分子量小,专一性强,切割的方式有平切和交错切, 作用时需要Mg+作辅助因子, 但不需要ATP
2、和SAM。第一个被分离的类酶是Hind 。 4. 连接酶是一类用于核酸分子连接形成磷酸二酯键的核酸酶,有DNA连接酶和RNA连接酶之分。基因工程中使用的连接酶来自于原核生物,有两种类型的DNA连接酶E.coliDNA连接酶和T4-DNA连接酶。基因工程中使用的主要是T4DNA连接酶,它是从T4噬菌体感染的E.coli中分离的一种单链多肽酶,既能进行粘性末端连接又能进行平末端连接。 5. 载体是能将分离或合成的基因导入细胞的DNA分子,有三种主要类型质粒DNA、病毒DNA、科斯质粒,在这三种类型的基础上,根据不同的目的,出现了各种类型的改造载体。 6. DNA重组连接的方法大致分为四种: 粘性末
3、端连接、平末端连接、同聚物接尾连接、接头连接法。粘性末端连接法是最常用的DNA连接方法,是指具有相同粘性末端的两个双链DNA分子在DNA连接酶的作用下, 连接成为一个杂合双链DNA。平末端连接是指在T4 DNA连接酶的作用下, 将两个具有平末端的双链DNA分子连接成杂种DNA分子。同聚物加尾连接就是利用末端转移酶在载体及外源双链DNA的3端各加上一段寡聚核苷酸, 制成人工粘性末端, 外源DNA和载体DNA分子要分别加上不同的寡聚核苷酸,如dA(dG)和dT(dC), 然后在DNA连接酶的作用下, 连接成为重组的DNA。这种方法可适用于任何来源的DNA片段, 但方法较繁, 需要核酸外切酶、S1核
4、酶、末端转移酶等协同作用。将人工合成的或来源于现有质粒的一小段DNA分子(在这一小段DNA分子上有某种限制性内切酶的识别序列), 加到载体或外源DNA的分子上, 然后通过酶切制造黏性末端的方法称为接头连接法。 7. 基因文库分为基因组文库、cDNA文库等,是指在一种载体群体中, 随机地收集着某一生物DNA的各种克隆片段, 理想地包含着该物种的全部遗传信息。 8. DNA重组分子在体外构建完成后,必须导入特定的受体细胞,使之无性繁殖并高效表达外源基因或直接改变其遗传性状,这个导入过程及操作统称为重组DNA分子的转化。目前常用的诱导感受态转化的方法是CaCl2 法(图3-20),此外也可以用基因枪
5、等方法转化外源DNA。 9. 重组体筛选有遗传学方法、核酸杂交筛选法等。 10. 基因工程技术是现代生物技术的核心,目前在工业、农业和医疗中已经显示了巨大的应用前景,并形成了一大批生物技术产业。基因工程是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因(DNA分子),按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性,获得新品种,生产新产品;或是研究基因的结构和功能,揭示生命活动规律。 基因工程技术诞生于20世纪70年代初,它是一门崭新的生物技术科学,它的创立和发展使生命科学产生了一次重大飞跃,证明并实现了基因的可操作性,使人类
6、从简单地利用天然生物资源走向定向改造和创造具有新品质的生物资源的时代。 基因工程技术诞生至今已经取得了辉煌的成就,成为当今生命科学研究领域中最有生命力和最引人注目的前沿学科之一,基因工程也是当今新的产业革命的一个重要组成部分。第一节 基因工程技术的诞生 基因工程又称基因操作(gene manipulation), 重组DNA(recombinant DNA)技术, 是70年代发展起来的遗传学的一个分支学科。一、基因工程技术的诞生 1972年,P. Berg等在PNAS上发表了题为“将新的遗传信息插入SV40病毒DNA的生物化学方法: 含有噬菌体基因和 E.coli 半乳糖操纵子的环状 SV40
7、DNA”,标志着基因工程技术的诞生。 SV40病毒是猿猴病毒,是一种直径为450的球形病毒,分子量为28106道尔顿。SV40的DNA是环状双链结构,全长5243个碱基对,编码三个衣壳蛋白VP1、VP2、VP3和一个T抗原。SV40DNA上有一个限制性内切酶E.coR的切点。 Berg等首先用化学方法构建了一个二聚体的环状SV40DNA(图3-1)。 图3-1 重组的SV40二聚体的构建(引自 Berg et. al,1972)当时所用的连接方法是同聚物谱尾法,重组体的鉴定主要是通过电子显微镜比较分子量大小。 当获得二聚体SV40DNA后,Berg等就证明了环状DNA被内切酶切成线性DNA后能
8、够重新环化,并且能够同另外的分子重组。于是他们进行第二步的实验就是从 dvgal DNA中制备含有 E.coli 的半乳糖操纵子DNA,用上述同样的方法进行重组连接,并获得成功。 Berg等的工作是人类第一次在体外给遗传物质动手术,标志着一个新时代的到来,为此他获得了1980年诺贝尔化学奖。二、基因操作的基本过程 和特点基因工程的操作可用图3-2表示 图3-2 基因工程的基本过程(引自Old & Primrose,1980)它所涉及的过程可用“分(合成)、 切、连、转、选、鉴”六个字表示。分(合成)指DNA的制备,包括从生物体中分离或人工合成。分离制备或合成制备DNA的方法都有很多种。切即在体
9、外将DNA进行切割,使之片段化或线性化。 连即在体外将不同来源的DNA分子重新连接起来,构建重组DNA分子。 转即将重组连接的DNA分子通过一定的方法重新送入或细胞中进行扩增和表达。 选从转化的全群体中将所需要的目的克隆挑选出来; 鉴就是进行对筛选出来的重组体进行鉴定,因为有些重组体并非是所需要的,必需通过分析鉴定。 基因工程有两个基本的特点分子水平上的操作和细胞水平上的表达。遗传重组是生物进化的推动力,自然界中发生的遗传重组主要是靠有性生殖。基因工程技术的诞生使人们能够在试管里进行分子水平上的操作,构建在生物体内难以进行的重组,然后将重组的遗传物质引入相应的宿主细胞,让其在宿主细胞中进行工作
10、。这实际上是进行无性繁殖,即克隆,所以基因工程通常有称为基因克隆。第二节 限制性内切核酸酶 外科医生给患者动手术需要手术刀,基因工程师们给DNA分子(基因)动手术需要分子手术刀,这就是工具酶。基因工程中使用的工具酶很多,包括限制性内切核酸酶、DNA连接酶和其他一些参与DNA合成与修饰的酶类,最重要的是限制性内切核酸酶。基因工程上把那些具有识别双链DNA分子中的某种特定核苷酸序列,并由此切割DNA双链结构的核酸内切酶统称为限制性内切核酸酶。一、限制性内切核酸酶的发现1952年Luria、Human在T偶数噬菌体、1953年weigle、Bertani在 噬菌体对大肠杆菌的感染实验中发现了细菌的限
11、制和修饰现象。正是对限制和修饰现象的深入研究,导致限制性内切核酸酶的发现。噬菌体在某一特定细菌宿主中生长的能力,取决于它最终在其中繁殖的细菌是什么菌株。 例如,将A噬菌体从一株大肠杆菌转移到另外一株,其生长效率往往会削弱,对这两个菌株的滴 定度可差好几个数量级。第二个菌株释放的噬菌体能百分之百再感染同类菌株,但是若先将它们感染原来的宿主菌,再将释放的子代噬菌体重新感染第二个菌株时,感染率要大大下降。此种现象即为宿主控制的限制作用(hostControlled restriction)。用放射性同位素标记的噬菌体进行的实验结果表明,在受感染的宿主细胞中,噬菌体生长的限制伴有噬菌体DNA的迅速降解
12、,然而,用作繁殖噬菌体的感染宿主菌株并不导致类似的噬菌体DNA的降解。如果某一细菌细胞具有一种能选择性降解来自侵染病毒(或其他来源)的核酸酶,那么,它必须能将这种外来DNA同它自己的DNA区分开来,之所以能够如此,乃是通过稍 为宿主控制的修饰作用(host-controlled modification)。 因此,限制(restriction)作用是指细菌的限制性核酸酶对DNA的分解作用,限制一般是指对外源DNA侵入的限制。修饰(modification)作用是指细菌的修饰酶对于DNA碱基结构改变的作用(如甲基化),经修饰酶作用后的DNA可免遭其自身所具有的限制酶的分解。到20世纪60年代中期
13、,科学家推测细菌中有限制修饰系统(restrictionmodification system R-M system)。该系统中有作用于同一DNA的两种酶,即分解DNA的限制酶和改变DNA碱基结构使其免遭限制酶分解的修饰酶,而且,这两种酶作用于同一DNA的相同部位。一般说来,不同种的细菌或不同种的细菌菌株具有不同的限制酶和修饰酶组成的限制-修饰系统。 1968年,Meselson从Ecoli K株中分离出了第一个限制酶EcoK,同年Linn和Aeber从 Ecoli B株中分离到限制酶EcoB。遗憾的是,由于EcoK和EcoB这两种酶的识别和切割位点不够专一,在基因工程中意义不大。 1970年
14、,Smith和Wilcox从流感嗜血杆菌中分离到一种限制性酶,能够特异性地切割 DNA,这个酶后来命名为Hind,这是第一个分离到的类限制性内切核酸酶。由于这类酶的识别序列和切割位点特异性很强,对于分离特定的DNA片段就具有特别的意义。二、限制性内切核酸酶的命名和分类(一)限制性内切核酸酶的命名按照国际命名法,限制性内切核酸酶属于水解酶类。由于限制性酶的数量众多,而且越来越多,并且在同一种菌中发现几种酶。为了避免混淆,1973年Smith 和Nathans对内切酶的命名提出建议,1980年,Roberts对限制性酶的命名进行分类和系统化。限制性酶采用三字母的命名原则,即属名 + 种名 + 株名
15、的个一个首字母,再加上序号,将限制性内切核酸酶的命名要点列于表3-1。表3-1 限制性内切核酸酶的命名要点条目要点基本原则3-4个字母组成, 方式是:属名+种名+株名+序号首字母取属名的第一个字母, 且大写第二字母取种名的第一个字母, 小写第三字母取种名的第二个字母, 小写; 若种名有词头, 且已命名过内切酶, 则取词头后的第一字母代替第四字母若有株名, 株名则作为第四字母, 是否大小写, 根据原来的情况而定顺序号若在同一菌株中分离了几个限制性内切核酸酶, 则按先后顺序冠以I、II、III,.等如: EcoK: Escherichia coliK (大肠杆菌K株)(二) 限制性内切核酸酶的分类
16、 限制性内切核酸酶的作用特点,将它们分为三大类。1. I类限制性内切核酸酶 I类限制性内切核酸酶的分子量较大, 一般在30万道尔顿以上, 通常由三个不同的亚基所组成。例如限制性酶EcoB是由R(135kD),M(62kD)和S(55kD)三种亚基组成的复合酶,这三个亚基分别由不同的基因编码。全酶的总分子量为449kD,共5个亚基,其中R亚基和M亚基各两分子。 类酶不仅是一种核酸内切酶, 同时在酶分子上还具有甲基化酶和ATPase的活性,所以是具有多种酶活性的复合酶类。作用时除了需要Mg+作辅助因子外, 还要求ATP和S腺苷甲硫氨酸(SAM)的存在。类酶具有特异的识别序列,大约15个碱基对。 类
17、酶虽然能够在一定序列上识别DNA分子, 并能同DNA分子作用, 因其识别DNA后, 要朝一个方向或两个方向移动一段距离(通常为1000个碱基左右),并且要形成一个环才能切割DNA(图3-3), 所以识别位点和切割位点不一致,产生的片段较大。 图3-3 I类酶的作用方式 (引自Lewin,1997)2. 类限制性内切核酸酶类限制性内切核酸酶也是基因工程中不常用的酶,分子量和亚基组成类似于类酶, 作用方式基本同类酶。如EcoP1是由两个亚基组成,一个亚基(M亚基)负责位点识别和修饰。另一个亚基(R亚基)具有核酸酶的活性(图3-5)。切割DNA时需要ATP,Mg2+,也能被SAM激活,但并非必需。
18、图3-4 类限制性内切核酸酶(引自Lewin,1997)3. 类限制性内切核酸酶这类酶的分子量较小. 一般在2-4万道尔顿, 通常由2-4个相同的亚基所组成。它们的作用底物为双链DNA, 极少数类酶也可作用于单链DNA, 或DNA/RNA杂种双链。这类酶的专一性强, 它不仅对酶切点邻近的两个碱基有严格要求, 而且对更远的碱基也有要求, 因此, 类酶既具有切割位点的专一性, 也具有识别位点的专一性, 一般在识别序列内切割。切割的方式有平切和交错切, 产生平末端的DNA片段或具有突出粘性末端的DNA片段(5或3粘性末端)。作用时需要Mg+作辅助因子, 但不需要ATP和SAM。类酶与对应的甲基化酶在
19、蛋白亚基上尚未发现有什么关系, 第一个被分离的类酶是Hind 。 三. 类限制性内切核酸酶的性质1. 识别序列的特异性在3类限制性内切核酸酶中,类限制性内切核酸酶的特异性最强。 大多数类限制性内切核酸酶识别的序列是回文序列。如BamHI和BglI都是识别六个碱基的DNA序列(图3-5),都是完全的回文序列。这段序列有两个基本的特征,第一是能够中在间划一个对称轴,两侧的序列两两对称互补配对,第二个特点是两条互补链的5到3的序列组成相同,即将一条链旋转1800,则两条链重叠。 图3-5 类限制性内切核酸酶识别的回文序列(引自D.Voet & Vote J.G.1995)2. 限制性内切核酸酶的切割
20、频率与速度切割频率是指限制性内切核酸酶在某DNA分子中预测的切点数。由于DNA是由四种类型的单核苷酸组成,假定DNA的碱基组成是均以的,而限制性内切核酸酶的识别位点是随机分布的,那么对于任何一种限制性内切核酸酶的切割频率,理论上应为1/4n,n表示该限制性内切核酸酶识别的碱基数。如识别4个碱基的限制性内切核酸酶,其切割频率应为每256个碱基有一个识别序列和切点(1/44=1/256),识别5个碱基的限制性内切核酸酶,其切割频率应为每1024个碱基有一个识别序列和切点,余下类推。实际上因DNA的分布是不均一的,且有大量的重复序列,加上内切酶的切点具有GC倾向,所以实际的频率偏低。如同是识别6个碱
21、基的限制性内切核酸酶,切割的频率相差很大EcoRI 4000;BamHI:6000;SalI:8000;HpaII:200。 根据限制性内切酶切割DNA所产生的产物末端,发现限制性内切酶对DNA的切割有两种方式,即平切和交错切。所谓平切,就是限制性内切酶在DNA双链的相同位置切割DNA分子,这样产生的末端就是平末端。交错切就是限制性内切酶在DNA双链的不同位置切割DNA,产生的DNA片段的末端不是平齐的(图3-6)。 图3-6 平末端与黏性末端(Hartl,1991)类限制性内切酶的切割产物有平末端和粘性末端(cohesive end)。粘性末端是指DNA分子的两端具有彼此互补的一段突出的单链
22、部分, 这一小段单链部分和同一分子的另一端或其它分子末端的单链部分如果互补的话,则能通过互补碱基之间的配对, 形成双链。并在DNA连接酶的作用下, 使同一DNA分子的两端连接成环状,或使两个分子连成一大的线状分子。不同限制性内切酶切割DNA产生的三种不同类型的末端(表3-3)。 表 3-3 某些限制性内切酶及产生的末端 5-粘性末端3粘性末端平末端酶识别序列酶识别序列酶识别序列Taq IT/CGAPst ICTGCA/GAlu IAG/CTCla IAT/CGATSac IGAGCT/CFnuDCG/CGMbo I/GATCSph IGCATG/CDpn IGA/TCBglA/GATCTBde
23、 IGGCGC/CHae GG/CCBamHIG/GATCCApa IGGGCC/CPvu CAG/CTGBcl IT/GATCAKpn IGGTAC/CSma ICCC/GGCHindA/AGCTTNae IGCC/GGCNco IC/CATGGHpa IGTT/AACXma IC/CCGGGNru ITCG/CGAXho IC/TCGAGBal ITGG/CCAEcoR IG/AATTCMst ITGC/GCASal IG/TCGACMha TTT/AAAXba IT/CTAGAEcoRGAT/ATC基因的分子手术是相当复杂的过程,除了需要限制性内切酶外,还需要其他一些工具酶包括连接酶、D
24、NA聚合酶、RNA聚合酶、核酸酶、末端修饰酶等,对DNA或RNA进行各种各样的修饰。其中最重要的是连接酶。第三节 基因工程载体载体(vector, vehicle) 的本意就是媒介体,基因工程上的载体是能将分离或合成的基因导入细胞的DNA分子,称为克隆载体。基因工程中有三种主要类型的载体质粒DNA、病毒DNA、科斯质粒,其中质粒DNA是最常用的载体,但运载能力低,柯斯质粒是质粒和噬菌体DNA的结合体,运载能力最高(图3-7)。在这三种类型的基础上,根据不同的目的,出现了各种类型的改造载体。图3-7 三种类型的载体(引自Greene,1998 )一、质粒载体质粒(plasmid)是染色体以外的遗
25、传物质,它是双链闭合环状DNA分子,其大小可从1kb到200kb左右,能够在宿主内利用宿主的酶系统进行复制。质粒是基因工程的主要载体。(一)质粒概念19461947年间,Lederberg和Tatum发现了细菌的接合现象,这是细菌的有性繁殖方式。 此后不久,便弄清了这种接合是两种不同的交配型(接合型),遗传信息总是从供体(雄性)转移到 受体(雌性)。当两种不同的交配型的细菌相互识别和接合以后,雄性细胞的致育因子,通过细胞的表面结构传递到雌性细胞,这种致育因子后来称为F因子。1952年,Lederberg指出,细菌的F因子与高等生物细胞质中染色体外的遗传单元极为相似,并正式提出了“质粒”这一名称
26、,以区别于染色体的遗传单元。一般来讲,质粒是细胞中能够独立复制的复制子,并在细胞分裂时能稳定传递给子代细胞。虽然质粒对细胞的生存没有影响,但质粒DNA上也有一些编码基因,赋予宿主细胞一些特性。 自发现能赋予细菌性别特征的F因子以后,又在大肠杆菌中发现了一种能够编码抗菌物质大肠杆菌素的Col质粒,包括ColB,ColV,ColE等。由这些因子产生的抗菌物质称细菌素(bacleriocin),是细菌所合成的一种蛋白质,对于同种或近缘种具有毒性。合成细菌素的能力和对于细菌素的抗性,都由染色体外的遗传因子所控制。在1959一1960年间,日本科学家在研究用强效抗生素治疗菌痢患者时,发现病原菌志贺氏 菌
27、含有使其同时能抗几种抗生素的基因,而且,这种抗药性基因能以和F因子非常相似的方式 转移给其他肠道细菌,这就是抗药因子(R因子)。抗药因子(resistance factor)实际上是控制细菌抗药性的一种质粒,能在细菌间转移,由抗药性转移因子和抗药性基因两部分组成。每个抗药因子上常具有几个抗药性基因。 (二)质粒DNA的基本性质大多数质粒DNA是是环状双链的DNA分子。如果两条链都是完整的环,这种质粒DNA分子称为共价闭合环状DNA(covalently closed circular, CCC DNA)。CCC DNA有两种构型,超螺旋DNA( supercolied DNA,SC DNA)和
28、松弛的DNA(Relaxed DNA),分别是由DNA促旋酶(DNA gyrase) 和拓朴异构酶(topoisomerase)作用的结果。如果质粒DNA中有一条链是不完整的,那么这种DNA分子就称为开环的(open circles,OC DNA),开环的DNA通常是由内切酶或机械剪切造成的图3-8)。从细胞中分离质粒DNA时,质粒DNA常常会转变成超螺旋的构型。图3-8 质粒DNA的三种构型(引自Old & Primrose,1980)溴化乙啶(ethidium bromide,EtBr)是一种扁平的分子,能够插入到DNA分子的碱基对之间,引起双螺旋的部分解旋,从而改变了DNA的体积和密度。
29、图3-9 相对分子质量相同构型不同的质粒DNA的琼脂糖凝胶电泳(引自 Old & Primrose, 1980) 由于不同构型的DNA插入EB的量不同,它们在琼脂糖凝胶电泳中的迁移率也不同,CCC DNA的泳动速度最快,OC DNA泳动速度最慢,L DNA居中(图3-9),所以很容易通过凝胶电泳和EB染色的方法将不同构型的DNA分别开来。(三) 质粒分类根据质粒的拷贝数将质粒分为松弛型质粒和严紧型质粒。质粒拷贝数(plasmid copy numbers)是指细胞中单一质粒的份数同染色体数之比值,常用质粒数/每染色体来表示。不同的质粒在宿主细胞中的拷贝数不同, 松弛型质粒(relaxed pl
30、asmid)的复制只受本身的遗传结构的控制,而不受染色体复制机制的制约,因而有较多的拷贝数。通常可达1015个/每染色体。并且可以在氯霉素作用下进行扩增,有的质粒扩增后,可达到3000/每染色体(ColE1, 可由24个达到1000至3000个)。这类质粒多半是分子量较小, 不具传递能力的质粒。基因工程中使用的多是松弛型质粒。严紧型质粒(stringent plasmid)在寄主细胞内的复制除了受本身的复制机构的控制外,还受染色体的严紧控制,因此拷贝数较少,一般只有12个/每染色体。这种质粒一般不能用氯霉素进行扩增。严紧型质粒多数是具有自我传递能力的大质粒。质粒的复制特性是受复制子控制的。基因
31、工程中使用的质粒多数是松弛性质粒载体。(四)载体的条件就克隆一个基因(DNA片段)来说,最简单的质粒载体也必需包括三个部分(图3-10)复制区,含有复制起点;选择标记,主要是抗性基因;克隆位点,便于外源DNA的插入。就复制特性来讲,要求载体必需有独立的复制起点, 最好是松弛型复制,这样便于得到大量的拷贝。有时需要有多个复制起点,能够在不同的宿主细胞中复制,扩大宿主范围。具有合适的克隆位点, 便于外源DNA的插入。克隆位点实际上限制性酶切位点,最好是具有多种限制性内切酶的单切点,这样适应性强,克隆方便,如果一种酶在载体上有多个切点,就会限制该切点的使用。具有可检测的选择标记, 也是一个重要的基本
32、条件,这种选择标记最好是能够赋予宿主易于检测的表型。选择标记就是常说的报告基因(report genes),包括抗生素抗性标记,以及一些生化表型的标记。另外,一个理想的质粒载体必需具有低分子量,因为小分子的质粒DNA易于操作,不容易被损伤,也容易被分离纯化。一般说小分子量的质粒分子的拷贝数比较高,酶切位点也少。图3-10 质粒载体的基本结构二、杂合载体 除了质粒载体外,噬菌体的DNA也可作为载体,不过都是改造过的,自然病毒的DNA不能作为载体。目前在基因工程中使用的载体大多是质粒和噬菌体的杂合载体。 (一)柯斯质粒(cosmid)载体cosmid 是英文 cos site-carrying p
33、lasmid 的缩写, 本意是带有粘性末端位点的质粒, 因此, 柯斯质粒是人工建造的的含有DNA的cos序列和质粒复制子的特殊类型的质粒载体。柯斯质粒的构建一般都是利用质粒的复制子、选择标记, 加上的cos位点序列及与包装有关的序列,构建的科斯质粒可以很好地用于基因克隆(图3-11)。图3-11 柯斯质粒载体克隆(引自Lodish et al,1986)早期构建的科斯质粒载体有一些不足,如克隆位点较少,抗性标记单一,容栽能力不大,后来进行了一些改进,克服了这些不足。柯斯质粒具有如下特点: 1. 具有质粒复制子。目前构建的柯斯质粒大多具有pMB1复制子或ColE1复制子, 所以进入寄主细胞后能够
34、象质粒一样进行复制, 并且能够被氯霉素扩增。 2. 具有质粒载体的抗生素抗性基因的选择标记。如果在这些标记中有克隆位点的话可用插入失活法进行筛选。例如上面构建的MuA-3就具有四环素抗性基因。 3. 具有噬菌体的包装和转导特性。由于柯斯质粒具有DNA的cos位点和相应的包装序列, 因此在克隆了适当大小的外源DNA以后可以被包装进入噬菌体蛋白颗粒, 并能进行转染。转导的能力比纯的质粒大3个数量级。进入寄主细胞后, 又可以自我环化。但它不能同寄主的染色体DNA整合, 也不会产生子代噬菌体裂解寄主。 4. 溶载能力大。这是柯斯质粒的最大优点。被克隆的DNA大小具有上限和下限, 这是因为柯斯质粒最后是
35、被包装到噬菌体颗粒, 它的最后大小应在噬菌体基因组的75%-105%之间。由于载体分子一般在5kb左右, 所以克隆的最大片段在45kb;如果载体的分子量为15kb的话, 克隆的最小片段为19kb。因此柯斯质粒适合构建真核生物的基因库, 而不适合克隆原核生物的基因。 (二)pUC载体系列的构建美国加州大学的Vieira和Messing利用pBR322和M13载体的优点,构建了一个更小的载体,称为 pUC7(图3-12),并在此基础上发展了pUC载体系列。 图3-12 pUC载体的构建(引自Winnacker,1987)pUC载体具有很多优点多克隆位点;松弛复制;有氨苄青酶素抗性;可通过化学显色筛
36、选。现在最常用的pUC载体是pUC18(图3-13),它的分子量小,具有多克隆位点和易于选择的分子标记,并且是松弛型复制,在正常情况下,它的拷贝数可达上千个,所以不需要用氯霉素进行扩增。图3-13 pUC18质粒载体图谱二、基因文库技术基因文库(Gene Library)是指在一种载体群体中, 随机地收集着某一生物DNA的各种克隆片段, 理想地包含着该物种的全部遗传信息(图3-18)。因此, 基因文库是人工构建的某一生物基因的“活期储蓄所”, 根据构建方法的不同,分为基因组文库、cDNA文库等。根据基因库的含量,又分为全库和特异性的库,全库含有某一生物的全部遗传信息,而特异性的库是不完整的,如
37、差示库。早期将通过构建基因文库来筛选所需克隆的方法称为鸟枪法。 图3-18 基因文库技术(J.J.Greene & Rao V.B.,1998)第三节 体外重组一、体外重组的方法 DNA重组连接的方法大致分为四种: 粘性末端连接、平末端连接、同聚物接尾连接、接头连接法。1. 粘性末端连接法 粘性末端连接(Cohesive end ligation)是指具有相同粘性末端的两个双链DNA分子在DNA连接酶的作用下, 连接成为一个杂合双链DNA(图3-14)。粘性末端可由识别回文序列的内切酶所产生, 或是用末端转移酶来制备。 凡是识别回文序列的内切酶切割DNA产生的末端都是粘性末端, 只有用同一种酶
38、切割产生的相同粘性末端才能通过末端单链的碱基配对并在DNA连接酶的作用下进行连接。 图3-14 黏性末端连接法(引自 Snyder & Champness , 1977) 粘性末端连接法是最常用的DNA连接方法, 酶切片段基本不需作什么处理就可以用于连接, 既经济又省时。由于大多数限制性内切酶都可以产生粘性末端, 操作方便。另外,通过粘性末端连接的重组体, 其外源片段很容易回收, 只要用原来的酶切割重组体就可以了。另外,也可以通过双酶切来获得黏性末端,并可进行定向重组连接(图3-15)。 图3-15 双酶切进行定向重组连接(引自 Snyder & Champness , 1977)平末端连接(
39、blunt end ligation)是指在T4 DNA连接酶的作用下(可加入适量的RNA连接酶), 将两个具有平末端的双链DNA分子连接成杂种DNA分子。平末端连接的效率比粘性末端连接的效率低得多,所以通常在连接反应体系中要适量添加促进大分子凝聚的凝聚剂,以提高平末端DNA连接的效率。常用的是PEG8000, 加入后, 可以起到两个作用: 一是可将平末端连接的效率提高1-3个数量级; 二是改变连接产物的分布, 抑制分子内的连接, 促进分子间的连接, 得到的连接产物主要是重组体。平末端连接的不利之处是连接效率低, 需要大量的连接酶, 有时为了提高连接效率, 通常要补加RNA连接酶。连接后, 缘
40、由的限制性内切酶内切酶的切点要消失, 所以不易回收插入的外源DNA片段。 3. 同聚物加尾法 所谓同聚物加尾(homopolymer tails joining)连接就是利用末端转移酶在载体及外源双链DNA的3端各加上一段寡聚核苷酸, 制成人工粘性末端, 外源DNA和载体DNA分子要分别加上不同的寡聚核苷酸,如dA(dG)和dT(dC), 然后在DNA连接酶的作用下, 连接成为重组的DNA。这种方法可适用于任何来源的DNA片段, 但方法较繁, 需要核酸外切酶、S1核酶、末端转移酶等协同作用(图3-16)。同聚物接尾法实际上是一种人工粘性末端连接法, 具有很多优点:首先不易自身环化,这是因为同一
41、种DNA的两端的尾巴是相同的, 所以不存在自身环化。因为载体和外源片段的末端是互补的粘性末端, 所以连接效率较高。用任何一种方法制备的DNA都可以用这种方法进行连接, 所以是一种通用的体外重组的方法。 图3-16 同聚物尾连接法(引自Old & Primrose,1980)1. 基因组DNA文库所谓基因组文库(genomic DNA Library), 就是用基因工程的方法,人工构建的含有某一生物基因组DNA的各种片段的克隆群。一般以改造的噬菌体DNA或柯斯质粒作为载体, 包括下列过程(图3-19): 高分子量染色体DNA的制备, 体外重组连接, 包装蛋白的制备, 重组体的体外包装, 将重组D
42、NA导入寄主细胞, 筛选。建造基因组文库不仅可以大量扩增含量极少的单拷贝的结构基因, 也可以克隆调控基因, 有利于研究基因的结构、功能和调控机理。基因组文库同遗传学上所讲的基因库是完全不同的概念。基因库(gene pool)是指在行有性生殖的某一群体中, 能进行生殖的个体所含总的遗传信息。在基因组文库的构建中, 由于使用的载体不同, 分为噬菌体载体和柯斯质粒载体构建的基因组文库、YAC文库、BAC文库。图3-19 基因组文库技术(引自Griffiths et al.1996)2. cDNA文库 同mRNA互补的DNA称为cDNA。mRNA为模板合成的cDNA可以用于基因的克隆化, 也可用这种方
43、法制备特异性的杂交探针。cDNA文库是以某一生物的总mRNA为模板, 在无细胞系统中, 在反向转录酶的作用下, 首先合成一互补的DNA, 即第一链, 破坏RMA模板后, 再以第一链为模板合成第二链, 得到的双链DNA称为cDNA基因。选用适合的载体, 将合成的cDNA基因重组导入寄主细胞, 经筛选得到的cDNA基因的克隆群称为cDNA文库( completement DNA Library) (图3-20)。由于cDNA技术合成的是不含内含子的功能基因, 因此是克隆真核生物基因的一种通用方法。 图3-20 cDNA文库构建(引自Old & Primrose,1980)由于细胞内的基因在表达的时
44、间上并非是统一的,具有发育的阶段性和时间性,有些则需要特殊的环境条件。所以,cDNA文库是不可能构建得十分全,也就是说任何一个cDNA文库都不可能包含某一生物全部编码基因。所以在构建cDNA文库时应根据研究目的的不同而选用不同的生物材料作为RNA分离的出发材料,有些甚至要经过特殊的诱导处理以提高所需DNA的丰度。第五节 重组DNA的转移、筛选与鉴定 转化是基因工程操作中一项十分重要的工作。DNA重组分子在体外构建完成后,必须导入特定的受体细胞,使之无性繁殖并高效表达外源基因或直接改变其遗传性状,这个导入过程及操作统称为重组DNA分子的转化(transformation)。重组体的筛选有两层涵义
45、,一是将携带有外源插入DNA片段的克隆挑选出来,二是将将携带有特定外源插入片段的重组体挑选出来。鉴定则是对筛选的重组体进行最后的鉴别。一、重组DNA的转化 能够接受转化作用的细菌的生理状态叫感受态。细菌的感受态是在适当的生长条件下获得的一种生理特征。要强调的是: 感受态是有关转化因子被吸收的生理状态, 而不是有关转化因子进入细胞后能否被接受的生理状态。处于感受态的受体细菌,其吸收转化因子的能力为一般细菌生理状态的千倍以上,而且不同细菌间的感受态差异往往受自身的遗传特性、菌龄、生理培养条件等诸多因素的影响。在自然条件下, 大多数类型的细菌不出现感受态,也不发生转化。然而可以通过某些化学诱导的方法
46、来制备感受态,用这种方法得到的感受态就称为人工诱导的感受态细胞。目前常用的诱导感受态转化的方法是CaCl2 法(图3-21),此外也可以用基因枪等方法转化外源DNA。图3-21 钙诱导的转化二、重组体的遗传学筛选法所谓遗传学方法(genetic selection)主要是根据受体细胞接受了重组DNA分子后所发生的遗传表型的变化直接选择重组体的方法。遗传表型的变化包括抗药性、缺陷基因的功能互补表型及噬菌斑的变化等。这些表型的变化, 有些是载体提供的表型特征, 有些则是插入序列提供的表型特征。选择的方法主要是根据平板上可见的表型变化, 用于选择的平板包括普通抗生素平板、插入失活抗生素平板、插入表达
47、抗生素平板、显色平板等, 由于这些方法都是直接从平板上筛选,所以又称为平板筛选法。(一) 插入失活筛选法从原理上讲,当外源基因(或DNA片段)插入到某一基因内的位点后, 使这个基因丧失了原有的功能叫插入失活(insertional inactivation) 。图3-22 插入失活的原理图3-23 聚合酶链反应(引自 Watson et al, 1992) 根据抗生素抗性基因插入失活原理而设计的插入失活法是重组体常用的筛选方法。如非重组的pBR322质粒DNA上的四环素和氨苄青霉素抗性基因都是正常的, 表型为AprTcr。带有这种质粒的受体菌可以在加有四环素和氨苄青霉素的双抗性平板上生长。但是, 如果在该质粒的四环素抗性基因内插入外援片段, 就会造成四环素抗性基因失活, 变成AprTcs, 携带这种质粒的宿主菌可以在氨苄青霉素的平板上生长, 而不能在四环素抗性平板上生长(图3-22)。2. 蓝白斑筛选法根据抗生素抗性基因插入失活原理而设计的插入失活法需要进行菌落平板的影印复制, 才能够将所需的重组体挑选出来, 大大增加