《大学物理第14章作业题(7页).doc》由会员分享,可在线阅读,更多相关《大学物理第14章作业题(7页).doc(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、-14 5设系以速率v0.60c相对于系沿xx轴运动,且在tt0时,x x0.(1)若有一事件,在系中发生于t2.0107,x50m处,该事件在系中发生于何时刻?(2)如有另一事件发生于系中t3.010-7 ,x10m处,在系中测得这两个事件的时间间隔为多少?分析在相对论中,可用一组时空坐标(x,y,z,t)表示一个事件.因此,本题可直接利用洛伦兹变换把两事件从系变换到系中.解(1) 由洛伦兹变换可得系的观察者测得第一事件发生的时刻为(2) 同理,第二个事件发生的时刻为所以,在系中两事件的时间间隔为14 6设有两个参考系 和,它们的原点在t0和t0时重合在一起.有一事件,在系中发生在t8.01
2、08 s,x60m,y0,z0处若系相对于 系以速率v0.6c 沿xx轴运动,问该事件在系中的时空坐标各为多少?分析本题可直接由洛伦兹逆变换将该事件从系转换到系.解由洛伦兹逆变换得该事件在 系的时空坐标分别为y y0z z014 7一列火车长0.30km(火车上观察者测得),以100kmh-1 的速度行驶,地面上观察者发现有两个闪电同时击中火车的前后两端.问火车上的观察者测得两闪电击中火车前后两端的时间间隔为多少?分析首先应确定参考系,如设地面为系,火车为系,把两闪电击中火车前后端视为两个事件(即两组不同的时空坐标).地面观察者看到两闪电同时击中,即两闪电在系中的时间间隔tt2t10.火车的长
3、度是相对火车静止的观察者测得的长度(注:物体长度在不指明观察者的情况下,均指相对其静止参考系测得的长度),即两事件在系中的空间间隔xx2 x10.30103m.系相对系的速度即为火车速度(对初学者来说,完成上述基本分析是十分必要的).由洛伦兹变换可得两事件时间间隔之间的关系式为 (1) (2)将已知条件代入式(1)可直接解得结果.也可利用式(2)求解,此时应注意,式中为地面观察者测得两事件的空间间隔,即系中测得的火车长度,而不是火车原长.根据相对论, 运动物体(火车)有长度收缩效应,即.考虑这一关系方可利用式(2)求解.解1根据分析,由式(1)可得火车(系)上的观察者测得两闪电击中火车前后端的
4、时间间隔为负号说明火车上的观察者测得闪电先击中车头x2 处.解2根据分析,把关系式 代入式(2)亦可得与解1 相同的结果.相比之下解1 较简便,这是因为解1中直接利用了0.30km这一已知条件.14 8在惯性系中,某事件A发生在x1处,经过2.0 106后,另一事件B发生在x2处,已知x2x1300m.问:(1) 能否找到一个相对系作匀速直线运动的参考系,在系中,两事件发生在同一地点?(2) 在系中,上述两事件的时间间隔为多少?分析在相对论中,从不同惯性系测得两事件的空间间隔和时间间隔有可能是不同的.它与两惯性系之间的相对速度有关.设惯性系以速度v 相对 系沿x 轴正向运动,因在 系中两事件的
5、时空坐标已知,由洛伦兹时空变换式,可得 (1) (2)两事件在系中发生在同一地点,即x2x10,代入式(1)可求出v 值以此作匀速直线运动的系,即为所寻找的参考系.然后由式(2)可得两事件在系中的时间间隔.对于本题第二问,也可从相对论时间延缓效应来分析.因为如果两事件在系中发生在同一地点,则t为固有时间间隔(原时),由时间延缓效应关系式可直接求得结果.解(1) 令x2x10,由式(1)可得(2) 将v值代入式(2),可得这表明在系中事件A先发生.14 9设在正负电子对撞机中,电子和正电子以速度0.90c 相向飞行,它们之间的相对速度为多少?分析设对撞机为系,沿x 轴正向飞行的正电子为系.系相对
6、系的速度v0.90c,则另一电子相对系速度ux0.90c,该电子相对系(即沿x轴正向飞行的电子)的速度ux即为题中所求的相对速度.在明确题目所述已知条件及所求量的物理含义后,即可利用洛伦兹速度变换式进行求解.解按分析中所选参考系,电子相对系的速度为式中负号表示该电子沿x轴负向飞行,正好与正电子相向飞行.讨论若按照伽利略速度变换,它们之间的相对速度为多少?14 11设在宇航飞船中的观察者测得脱离它而去的航天器相对它的速度为1.2108m-1 i.同时,航天器发射一枚空间火箭,航天器中的观察者测得此火箭相对它的速度为1.0108m-1 i.问:(1) 此火箭相对宇航飞船的速度为多少? (2) 如果
7、以激光光束来替代空间火箭,此激光光束相对宇航飞船的速度又为多少? 请将上述结果与伽利略速度变换所得结果相比较,并理解光速是运动体的极限速度.分析该题仍是相对论速度变换问题.(2)中用激光束来替代火箭,其区别在于激光束是以光速c相对航天器运动,因此其速度变换结果应该与光速不变原理相一致.解设宇航飞船为系, 航天器为系, 则系相对系的速度v1.2 108m1 ,空间火箭相对航天器的速度为ux1.0108m1,激光束相对航天器的速度为光速c.由洛伦兹变换可得:(1) 空间火箭相对 系的速度为(2) 激光束相对 系的速度为即激光束相对宇航飞船的速度仍为光速c,这是光速不变原理所预料的.如用伽利略变换,
8、则有uxc v c.这表明对伽利略变换而言,运动物体没有极限速度,但对相对论的洛伦兹变换来说,光速是运动物体的极限速度.14 16有一固有长度为l0 的棒在 系中沿x 轴放置,并以速率u 沿xx轴运动.若有一系以速率v 相对 系沿xx轴运动,试问从系测得此棒的长度为多少?分析当棒相对观察者(为系)存在相对运动时,观察者测得棒的长度要比棒的固有长度l0 短,即.式中u是棒相对观察者的速度,而不要误认为一定是系和 系之间的相对速度v.在本题中,棒并非静止于系,因而系与 系之间的相对速度v 并不是棒与系之间的相对速度u.所以本题应首先根据洛伦兹速度变换式求u,再代入长度收缩公式求l.解根据分析,有
9、(1) (2)解上述两式,可得14 18一固有长度为4.0 m 的物体,若以速率0.60c 沿x 轴相对某惯性系运动,试问从该惯性系来测量,此物体的长度为多少?解由洛伦兹长度收缩公式14 20若一电子的总能量为5.0MeV,求该电子的静能、动能、动量和速率.分析粒子静能E0 是指粒子在相对静止的参考系中的能量,式中为粒子在相对静止的参考系中的质量.就确定粒子来说,E0 和m0均为常数(对于电子,有m0 9.1 1031,E00.512 MeV).本题中由于电子总能量E E0 ,因此,该电子相对观察者所在的参考系还应具有动能,也就具有相应的动量和速率.由相对论动能定义、动量与能量关系式以及质能关
10、系式,即可解出结果.解电子静能为电子动能为EK EE0 4.488 MeV由,得电子动量为由可得电子速率为14 21一被加速器加速的电子,其能量为3.00 109eV.试问:(1) 这个电子的质量是其静质量的多少倍? (2) 这个电子的速率为多少?解(1) 由相对论质能关系和可得电子的动质量m 与静质量m0之比为(2) 由相对论质速关系式可解得可见此时的电子速率已十分接近光速了.14 22在电子偶的湮没过程中,一个电子和一个正电子相碰撞而消失,并产生电磁辐射.假定正负电子在湮没前均静止,由此估算辐射的总能量E.分析在相对论中,粒子的相互作用过程仍满足能量守恒定律,因此辐射总能量应等于电子偶湮没
11、前两电子总能之和.按题意电子偶湮没前的总能只是它们的静能之和.解由分析可知,辐射总能量为14 23若把能量0.50 106 eV给予电子,让电子垂直于磁场运动,其运动径迹是半径为2.0cm 的圆.问:(1) 该磁场的磁感强度B 有多大? (2) 这电子的动质量为静质量的多少倍?分析(1) 电子在匀强磁场中作匀速圆周运动时,其向心力为洛伦兹力F evB,在轨道半径R 确定时,BB (p),即磁感强度是电子动量的函数.又由相对论的动能公式和动量与能量的关系可知电子动量p p(E0 ,EK),题中给予电子的能量即电子的动能EK ,在电子静能已知的情况下,由上述关系可解得结果.(2) 由相对论的质能关系可得动质量和静质量之比.本题中电子的动能EK 0.50 MeV 与静能E00.512 MeV 接近,已不能用经典力学的方法计算电子的动量或速度,而必须用相对论力学.事实上当EK 0.50 E0 时,用经典力学处理已出现不可忽略的误差.解(1) 根据分析,有 E E0 +EK (1) (2) (3)联立求解上述三式,可得(2) 由相对论质能关系,可得本题也可以先求得电子速率v 和电子动质量m,但求解过程较繁.-第 7 页-