利用空间向量求二面角的平面角[2](6页).doc

上传人:1595****071 文档编号:35879877 上传时间:2022-08-24 格式:DOC 页数:6 大小:713.50KB
返回 下载 相关 举报
利用空间向量求二面角的平面角[2](6页).doc_第1页
第1页 / 共6页
利用空间向量求二面角的平面角[2](6页).doc_第2页
第2页 / 共6页
点击查看更多>>
资源描述

《利用空间向量求二面角的平面角[2](6页).doc》由会员分享,可在线阅读,更多相关《利用空间向量求二面角的平面角[2](6页).doc(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、-利用空间向量求二面角的平面角2-第 6 页利用空间向量求二面角的平面角专题复习1.二面角的概念: 二面角的定义.从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面若棱为,两个面分别为的二面角记为.2二面角的平面角: (1)过二面角的棱上的一点分别在两个半平面内作棱的两条垂线,则叫做二面角的平面角(2)一个平面垂直于二面角的棱,且与两半平面交线分别为为垂足,则也是的平面角说明:(1)二面角的平面角范围是;(2) 二面角的平面角为直角时,则称为直二面角,组成直二面角的两个平面互相垂直 引导:请学生归纳已学过的求二面角的大小的方法,教师作必要的补充与

2、引导明确本节课的课题二. 求二面角的平面角:【回顾复习定义法求二面角的平面角】例1:在棱长为1的正方体中,求平面与底面所成二面角的平面角正弦值大小.解:过作于点,正方体,平面,为平面与平面所成二面角的平面角,可以求得:,所以,平面与底面所成二面角的平面角的正弦值大小为【回顾复习用三垂线法求二面角的平面角】例2如图,平面,若,求二面角的正弦值分析:要求二面角的正弦值,首先要找到二面角的平面角解:过作于,过作于,连结,则垂直于平面, 为二面角的平面角,又平面,平面,又,平面,设,则,在中,同理,中, ,所以,二面角的正弦值为 让学生观察两平面的法向量的夹角与二面角的平面角之间的关系,引导学生用法向

3、量的夹角解决。通过观察探究利用法向量解决:例1:解:建立空间直角坐标系得: 设平面的法向量,平面的法向量,可得,即二面角的平面角例2:解:建立空间直角坐标系得: 设平面的法向量,平面的法向量得: 所以,二面角的正弦值为三 归纳小结:本节课回忆巩固了求解二面角的一些方法,并且通过类比用空间向量知识求解二面角,我们感受到空间向量的巧妙之处,但要让同学们认识到法向量之间的夹角与二面角的平面角的异同之处。四作业求二面角专题45如何用空间向量求解二面角求解二面角大小的方法很多,诸如定义法、三垂线法、垂面法、射影法、向量法等若干种。而这些方法中最简单易学的就是向量法,但在实际教学中本人发现学生利用向量法求

4、解二面角还是存在一些问题,究其原因应是对向量法的源头不尽了解。本文就简要介绍有关这类问题的处理方法,希望对大家有所帮助。在立体几何中求二面角可归结为求两个向量的夹角问题对于空间向量、,有cos,=利用这一结论,我们可以较方便地处理立体几何中二面角的问题例1 在四棱锥V-ABCD中,底面ABCD是正方形,侧面VAD是正三角形,平面VAD底面ABCD求面VAD与面VDB所成的二面角的余弦值证明: 建立如图空间直角坐标系,并设正方形边长为1,依题意ABCVDxyz得= (0,1,0),是面VAD的法向量,设= (1,y,z)是面VDB的法向量,则= (1,1,)。cos,=,又由题意知,面VAD与面

5、VDB所成的二面角为锐角,所以其余弦值是BBCACADM例2如图,直三棱柱ABCA1B1C1中,ACB =,AC=1,CB=,侧棱AA1=1,侧面AA1B1B的两条对角线交点为D,B1C1的中点为M求证CD平面BDM;求面B1BD与面CBD所成二面角的余弦值 解:略BBCACADMyxzG如图,以C为原点建立坐标系.设BD中点为G,连结BG,则依G(,),= (,),= (,),= 0,BDBG又CDBD,与的夹角等于所求二面角的平面角 cos=例3如图,在四棱锥PABCD中,底面ABCD是正方形,侧棱PD底面ABCD,PD=DC,E是PC的中点,作EFPB交PB于点F求二面角CPBD的大小解

6、:zPFEDABCyxG如图所示建立空间直角坐标系,D为坐标原点,设设点F的坐标为,=,则从而所以=由条件EFPB知,= 0,即,解得点F的坐标为,且,即,故是二面角CPBD的平面角=,且,所以,二面角CPBD的大小为xyzABBA例4 已知三棱柱AB中,平面平面,=,=,且= 2,=,求二面角AB的余弦值解:以为原点,分别以,所在的直线为x,y轴,过点且与平面垂直的直线为z轴,建立空间直角坐标系如图,则(0,0,0),(0,1,),A(,0,0),(,1,),B(0,2,0)= (,1,),= (,2,0)显然为平面的法向量,取= (0,0,1),设平面的法向量为= (x,y,z),则 = 0,= 0即,令y =,x = 2,z = 1,则= (2,1)cos,=,故二面角AB的余弦值是

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 单元课程

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁