初一找规律经典题型(含部分问题详解)(11页).doc

上传人:1595****071 文档编号:35872023 上传时间:2022-08-24 格式:DOC 页数:11 大小:345.50KB
返回 下载 相关 举报
初一找规律经典题型(含部分问题详解)(11页).doc_第1页
第1页 / 共11页
初一找规律经典题型(含部分问题详解)(11页).doc_第2页
第2页 / 共11页
点击查看更多>>
资源描述

《初一找规律经典题型(含部分问题详解)(11页).doc》由会员分享,可在线阅读,更多相关《初一找规律经典题型(含部分问题详解)(11页).doc(11页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、-初一找规律经典题型(含部分问题详解)-第 11 页初一数学规律题应用知识汇总 “有比较才有鉴别”。通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。揭示的规律,常常包含着事物的序列号。所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。 初中数学考试中,经常出现数列的找规律题,下面就此类题的解题方法进行探索: 一、基本方法看增幅 (一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a1+(n-1)b,其中a为数列的第一位数,b为增幅,

2、(n-1)b为第一位数到第n位的总增幅。然后再简化代数式a+(n-1)b。例:4、10、16、22、28,求第n位数。分析:第二位数起,每位数都比前一位数增加6,增幅都是6,所以,第n位数是:4+(n-1) 66n2例1、已知一个面积为S的等边三角形,现将其各边n(n为大于2的整数)等分,并以相邻等分点为顶点向外作小等边三角形(如上图所示)(1)当n = 5时,共向外作出了 个小等边三角形(2)当n = k时,共向外作出了 个小等边三角形(用含k的式子表示) n=3n=4n=5例2、如图,在图1中,互不重叠的三角形共有4个,在图2中,互不重叠的三角形共有7个,在图3中,互不重叠的三角形共有10

3、个,则在第个图形中,互不重叠的三角形共有 个(用含的代数式表示)。 (二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。如增幅分别为3、5、7、9,说明增幅以同等幅度增加。此种数列第n位的数也有一种通用求法。 基本思路是:1、求出数列的第n-1位到第n位的增幅; 2、求出第1位到第第n位的总增幅; 3、数列的第1位数加上总增幅即是第n位数。此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察的方法求出,方法就简单的多了。例1.古希腊数学家把数1,3,6,10,15,21,叫做三角形数,它有一定的规律性,则第24个三角形数与第22个三角形数的

4、差为 。妙题赏析:规律类的中考试题,无论在素材的选取、文字的表述、题型的设计等方面都别具一格,令人耳目一新,其目的是继续考察学生的创新意识与实践能力,在往年“数字类”、“计算类”、“图形类”的基础上,今年又推陈出新,增加了“设计类”与“动态类”两种新题型,现将历年来中考规律类中考试题分析如下:1、设计类【例1】(2005年大连市中考题)在数学活动中,小明为了求的值(结果用n表示),设计如图a所示的图形。(1)请你利用这个几何图形求的值为 。(2)请你利用图b,再设计一个能求的值的几何图形。【例2】(2005年河北省中考题)观察下面的图形(每一个正方形的边长均为1)和相应的等式,探究其中的规律:

5、(1)写出第五个等式,并在下边给出的五个正方形上画出与之对应的图示;(2)猜想并写出与第n个图形相对应的等式。解析:【例1】(1)(2)可设计如图1,图2, 图3,图4所示的方案:【例2】(1),对应的图形是(2)。此类试题除要求考生写出规律性的答案外,还要求设计出一套对应的方案,本题魅力四射,光彩夺目,极富挑战性,要求考生大胆的尝试,力求用图形说话。考察学生的动手实践能力与创新能力,体现了“课改改到哪,中考就考到哪!”的命题思想。 3、数字类【例5】(2005年福州市中考题)瑞士中学教师巴尔末成功地从光谱数据,中得到巴尔末公式,从而打开了光谱奥妙的大门。请你按这种规律写出第七个数据是 。解析

6、:【例5】这列数的分子分别为3,4,5的平方数,而分母比分子分别小4,则第7个数的分子为81,分母为77,故这列数的第7个为。【例6】(2005年长春市中考题)按下列规律排列的一列数对(1,2)(4,5)(7,8),第5个数对是 。解析:【例6】有序数对的 前一个数比后一个数小1,而每一个有序数对的第一个数形成等差数数列,1,4,7,故第5个数为13,故第5个有序数对为(13,14)。【例7】(2005年威海市中考题)一组按规律排列的数:,请你推断第9个数是 解析:【例7】中这列数的分母为2,3,4,5,6的平方数,分子形成而二阶等差数列,依次相差2,4,6,8故第9个数为1+2+4+6+8+

7、10+12+14+1673,分母为100,故答案为。4、计算类【例10】(2005年陕西省中考题)观察下列等式: , 则第n个等式可以表示为 。解析:【例10】【例11】(2005年哈尔滨市中考题)观察下列各式:,根据前面的规律,得: 。(其中n为正整数)解析:【例11】【例12】(2005年耒阳市中考题)观察下列等式:观察下列等式:41=3,9-4=5,16-9=7,25-16=9,36-25=11,这些等式反映了自然数间的某种规律,设n(n1)表示了自然数,用关于n的等式表示这个规律为 。解析:【例12】(n1,n表示了自然数)5、 图形类【例13】(2005年淄博市中考题)在平面直角坐标

8、系中,横坐标、纵坐标都为整数的点称为整点。观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第10个正方形(实线)四条边上的整点共有 个。解析:【例13】第一个正方形的整点数为24-44,第二个正方形的 正点数有3448,第三个正方形的整点数为44412个,故第10个正方形的整点数为114-440,【例14】(2005年宁夏回自治区中考题) “”代表甲种植物,“”代表乙种植物,为美化环境,采用如图所示方案种植。按此规律,第六个图案中应种植乙种植物 株。【例14】第一个图案中以乙中植物有224个,第二个图案中以乙中植物有339个,第三个图案中以乙中植物有4416个,故第六个图案中

9、以乙中植物有7749个.【例15】(2005年呼和浩特市中考题)如图,是用积木摆放的一组图案,观察图形并探索:第五个图案中共有 块积木,第n个图案中共有 块积木。【例15】第一个图案有1块积木,第二个图案形有1+342的平方,第三个图案有1+3+593的平方,故第5个图案中积木有1+3+5+7+9255的平方个块,第n个图案中积木有n的平方个块。综观规律性中考试题,考察了学生收集数据,分析数据,处理信息的能力,考生在回答此类试题时,要体现“从特殊到一般,从抽象到具体”的思想,要从简单的情形出发,认真比较,发现规律,分析联想,归纳猜想,推出结论,一举成功。2007无锡)图1是由若干个小圆圈堆成的

10、一个形如正三角形的图案,最上面-层有一个圆圈,以下各层均比上-层多一个圆圈,一共堆了n层将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为1+2+3+n= 如果图1中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1,2,3,4,则最底层最左边这个圆圈中的数是;(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数-23,-22,-21,求图4中所有圆圈中各数的绝对值之和解析:(1)图3中依次排列为1,2,4,7,11,如果用后项减前项依次得到1,2,3,4,5,正好是等差数列,再展开原数列可以看出第一位是1,从第二位开始后

11、项减前项得到等差数列,分解一下:1,1+1,1+1+2,1+1+2+3,1+1+2+3+4,从分解看,第n个圆圈的个数应为1+(1+2+3+4+n),而1+2+3+4+n正好是连续自然数和的公式推导,上面已给出了公式: 1+2+3+n= ,则第n项公式为1+ ,已知共有12层,那么求图3最左边最底层这个圆圈中的数应是12层的第一个数,那么1+11(11+1)/2=67. 解析:(2)已知图中的圆圈共有12层,按图4的方式填上-23,-22,-21,,求图4中所有圆圈中各数的绝对值之和?第一层到第十二层共有多少个圆圈呢,运用等差数列求和公式得:(1+12)12/2=78个,那78个圆圈中有多少个

12、负数,多少个正数呢,从已知条件可以看出,第一个数是-23,到-1有23个负数,1个0,78-24=54个正数, 1至54,所以分段求和,两段相加得到图4中所有圆圈的和。第一段:S=(|-23|+|-1|)*23/2=276,第二段=(1+54)*54/2=1485,相加后得1761。例如、观察下列数表:解析:根据数列所反映的规律,第行第列交叉点上的数应为_ .(乐山市2006年初中毕业会考暨高中阶段招生统一考试)这一题,看上去内容比较多,实际很简单。题目条件里的数构成一个正方形。让我们求的是左上角至右下角对角线上第n个数是多少。我们把对角线上的数抽出来,就是1,3,5,7,。这是奇数从小到大的

13、排列。于是,问题便转化成求第n个奇数的表达式。即2n-1。三、 要善于比较“有比较才有鉴别”。通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。揭示的规律,常常包含着事物的序列号。所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。例如,观察下列各式数:0,3,8,15,24,。试按此规律写出的第100个数是 。”解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数。我们把有关的量放在一起加以比较:给出的数:0,3,8,15,24,。序列号: 1,2,3, 4, 5,。

14、容易发现,已知数的每一项,都等于它的序列号的平方减1。因此,第n项是n2-1,第100项是1002-1。如果题目比较复杂,或者包含的变量比较多。解题的时候,不但考虑已知数的序列号,还要考虑其他因素。譬如,日照市2005年中等学校招生考试数学试题“已知下列等式: 1312; 132332; 13233362; 13233343102 ;由此规律知,第个等式是 ”解析:这个题目,在给出的等式中,左边的加数个数在变化,加数的底数在变化,右边的和也在变化。所以,需要进行比较的因素也比较多。就左边而言,从上到下进行比较,发现加数个数依次增加一个。所以,第个等式应该有5个加数;从左向右比较加数的底数,发现

15、它们呈自然数排列。所以,第个等式的左边是1323334353。再来看等式的右边,指数没有变化,变化的是底数。等式的左边也是指数没有变化,变化的是底数。比较等式两边的底数,发现和的底数与加数的底数和相等。所以,第个等式右边的底数是(1+2+3+4+5),和为152。四、要善于寻找事物的循环节有些题目包含着事物的循环规律,找到了事物的循环规律,其他问题就可以迎刃而解。譬如,玉林市2005年中考数学试题:“观察下列球的排列规律(其中是实心球,是空心球):从第1个球起到第2004个球止,共有实心球 个。”这些球,从左到右,按照固定的顺序排列,每隔10个球循环一次,循环节是。每个循环节里有3个实心球。我

16、们只要知道2004包含有多少个循环节,就容易计算出实心球的个数。因为200410=200(余4)。所以,2004个球里有200个循环节,还余4个球。200个循环节里有2003=600个实心球,剩下的4个球里有2个实心球。所以,一共有602个实心球。六、要进行计算尝试找规律,当然是找数学规律。而数学规律,多数是函数的解析式。函数的解析式里常常包含着数学运算。因此,找规律,在很大程度上是在找能够反映已知量的数学运算式子。所以,从运算入手,尝试着做一些计算,也是解答找规律题的好途径。例如,汉川市2006年中考试卷数学“观察下列各式:0,x1,x2,2x3,3x4,5x5,8x6,。试按此规律写出的第

17、10个式子是 。”这一题,包含有两个变量,一个是各项的指数,一个是各项的系数。容易看出各项的指数等于它的序列号减1,而系数的变化规律就不那么容易发现啦。然而,如果我们把系数抽出来,尝试做一些简单的计算,就不难发现系数的变化规律。系数排列情况:0,1,1,2,3,5,8,。从左至右观察系数的排列,依次求相邻两项的和,你会发现,这个和正好是后一项。也就是说原数列相邻两项的系数和等于后面一项的系数。使用这个规律,不难推出原数列第8项的系数是5+8=13,第9项的系数是8+13=21,第10项的系数是13+21=34。所以,原数列第10项是34x9。一、数字排列规律题1、下面数列后两位应该填上什么数字

18、呢?2 3 5 8 12 17 _ _ 2、请填出下面横线上的数字。 1 1 2 3 5 8 _ 215、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、,那么第2005个数是( ).A1B2C3D47、一组按规律排列的数:, 请你推断第9个数是 9、观察下列各式;、1+1=12 ;、2+2=23; 、3+3=34 ;请把你猜想到的规律用自然数n表示出来 。10、观察下面的几个算式:、1+2+1=4; 、1+2+3+2+1=9; 、1+2+3+4+3+2+1=16;、1+2+3+4+5+4+3+2+1=25,根据你所发现的规律,请你直接写出第n个式子 12、把数字按如

19、图所示排列起来,从上开始,依次为第一行、第二行、第三行、,中间用虚线围的一列,从上至下依次为1、5、13、25、,则第10个数为_。第1行 1 第2行 2 3 第3行 4 5 6 第4行 7 8 9 10 第5行 11 12 13 14 15 (第13题)13、已知一列数:1,2,3,4,5,6,7,将这列数排成如上所示的形式:按照上述规律排下去,那么第10行从左边数第5个数等于 14、观察下列各算式: 1+3=4=2的平方,1+3+5=9=3的平方,1+3+5+7=16=4的平方 按此规律(1) 试猜想:1+3+5+7+2005+2007的值?(2)推广: 1+3+5+7+9+(2n-1)+

20、(2n+1)的和是多少 ? (3)小凡在计算时发现,1111=121,111111=12321,11111111=1234321,他从中发现了一个规律。你能根据他所发现的规律很快地写出 111111111111111111=_吗? 答案是_。(4)四个同学研究一列数:1,3,5,7,9,11,13,照此规律,他们得出第n个数分别如下,你认为正确的是 ( ) A.2n1 B.12n C. D.(5)有一列数从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若,则为_.(6)观察数列1,1,2,3,5,8,x,21,y,则2x-y=_(7)观察下列各式: ,请你根据上述规律,猜想的末位数字

21、是_.(8)观察下列各式: 猜想:15、观察数表,根据其中的规律,在数表中的 内填入适当的数。 11 -11 -2 11 -3 3 1 1 -4 6 -4 11 -5 -10 5 -11 -6 -20 15 -6 117. 观察下面一列有规律的数, 根据这个规律可知第n个数是 (n是正整数)二、几何图形变化规律题5、用同样大小的黑、白两种颜色的棋子摆设如下图所示的正方形图案,则第n个图案需要用白色棋子 枚(用含有n的代数式表示)6、观察下面图形我们可以发现:第1个图中有1个正方形,第2个图中共有5个正方形,第3个图中共有14个正方形,按照这种规律下去的第5个图形共有_个正方形。7、下图是某同学

22、在沙滩上用石于摆成的小房子观察图形的变化规律,写出第n个小房子用了 块石子8、用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干个图案:第(4)个图案中有黑色地砖4块;那么第()个图案中有白色地砖 块。10.将一张长方形的纸对折,如图所示可得到一条折痕(图中虚线). 继续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕,那么对折四次可以得到_ 条折痕 .如果对折n次,可以得到 条折痕 .三、根据已知等式探究规律2、观察下面的几个算式: 1+2+1=4, 1+2+3+2+1=9, 1+2+3+4+3+2+1=16, 1+2+3+4+5+4+3+2+1=25, 根据你所

23、发现的规律,请你直接写出下面式子的结果: 1+2+3+99+100+99+3+2+1=_4、观察下列等式:21=2;22=4;23=8;24=16;25=32;26=64;27=128;用你发现的规律确定22007的个位数学数字是 分析:观察计算结果的末位数字,依次按2,4,8,6循环出现。而20074=5013,故22007的个位数字与23的个位数字相同,所以2的个位数字是 8 19.研究下列等式,你会发现什么规律?13+1=4=2224+1=9=3235+1=16=4246+1=25=52设n为正整数,请用n表示出规律性的公式来.5、探索规律可写成 , 可写成 可写成 ,可写成 (1)把这

24、个规律用含有n的式子写出来;(2)计算9526、观察: 计算:7、9、一只小虫在数轴上原点处,第一次向右跳了1个单位,紧接着又向左跳了2个单位,第3次向右跳了3个单位,第4次向左跳了4个单位按以上规律,它共跳了101次,你能确定小虫在数轴上的最后落点表示什么数吗?前4次跳动图10.观察下面一列数:-1,2,-3,4,-5,6,-7,将这列数排成下列形式第8题按照上述规律排下去,那么第10行从左边第9个数是 .11.观察下列等式9-1=816-4=1225-9=1636-16=20这些等式反映自然数间的某种规律,设n(n1)表示自然数,用关于n的等式表示这个规律为. 四、与数阵有关的问题 1、下

25、图所示是一个数表,现用一个矩形在数表中任意框出4个数则:(1)、a、c的关系是:_ _;(2)、当abcd32时,a_ _日 一 二 三 四 五 六1 2 3 4 5 67 8 9 10 11 12 1314 15 16 17 18 19 2021 22 23 24 25 26 2728 29 30 312、上面给出的是2004年3月份的日历表,任意圈出一竖列上相邻的三个数,请你运用方程思想来研究,发现这三个数的和不可能是( )A69 B54 C27 D403、在如图所示的2003年1月份的日历中,用一个方框圈出任意33个数星期日星期一星期二星期三星期四星期五星期六12345678910111

26、213141516171819202122232425262728293031(1) 从左下角到右上角的三个数字之和为45,那么这9个数的和是多少?这9个日期中最后一天是1月几日? (2) 用这样的方框能否圈出总和为162的9个数?五、与视图、展开图有关的问题12211、如图是几个小立方块所搭的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的主视图为( )ADBC2、下图是由一些相同的小正方体构成的几何体的三视图,在这个几何体中,小正方体的个数是( )A、 7 B、 6 C、 5 D、 43、水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示如上

27、图,是一个正方体的平面展开图,若图中“锦”为前面,“似”为下面,“前”为后面,则“祝”表示正方体的 面1236454、下图可以沿线折叠成一个带数字的立方体,每三个带数字的面交于立方体的一个顶点,则相交于一个顶点的三个面上的数字之和最小是 (A)、7 (B)、8 (C)、9 (D)、 10 5、如图,是一块半径为1的半圆形纸板,在的左下端剪去一个半径为的半圆后得到图形,然后依次剪去一个更小的半圆(其直径为前一个被剪掉半圆的半径)得图形,记纸板的面积为,试计算求出 ; ;并猜想得到 。(6)人们经常利用图形的规律来计算一些数的和. 如在边长为1的网格图1中,从左下角开始,相邻的黑折线围成的面积分别

28、是1,3,5,7,9,11,13,15,17,它们有下面的规律:图1 1+3=22 ; 1+3+5=32 ; 1+3+5+7=42 ;1+3+5+7+9=52 ; 请你按照上述规律,计算1+3+5+7+9+11+13的值,并在图1中画出能表示该算式的图形;(2)请你按照上述规律,计算第条黑折线与第条黑折线所围成的图形面积;图2(3)请你在边长为1的网格图2中画出下列算式所表示的图形.1+8=32 ;1+8+16=52 ;1+8+16+24=72 ;1+8+16+24+32=92 . (7)观察图1-27中有几个三角形?由此你发现三角形的个数有什么规律呢?一个三角形 3个三角形 _个三角形 _个三角形 _个三角形(n个点)(8)下图(1)表示1张餐桌和6张椅子(每个小半圆代表1张椅子),若按这种方式摆放20张餐桌需要的椅子张数是。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 单元课程

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁