《数学活动-折纸做60°、30°、15°的角.doc》由会员分享,可在线阅读,更多相关《数学活动-折纸做60°、30°、15°的角.doc(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、数学活动 折纸做60、30、15的角教学目标:1.通过折叠,加深对轴对称、全等性质的认识; 2.能折出60、30、15的角; 3.通过折叠,建立空间观念,让学生经历折叠、观察、猜想、推理、交流、反思等理性思维过程,发展学生对几何图形的认知能力、演绎推理能力,进一步提升数学活动经验;教学重点难点:通过活动的任务、目的、过程等环节,培养学生的动手能力和创新能力。难点:通过推理论证,证实所折的角为60、30、15的角。教学方法:采用活动探究式的教学方法。教学课时:1课时教学过程(一)创设情境,引入新课折纸是一门艺术形式,动物、花、船和人等都是折纸的创作题材,在折的过程里要用到很多的数学知识,比如:如
2、何折出特殊的角度,这就需要我们通过数学知识来解决这个问题,下面我们就来具体学习一下如何通过折纸,折出特殊的角度。(二)提出问题,深度思考 问题1:在一张矩形纸片上,你怎么折出一个45的角?问题2:用一张矩形纸片你还能折出哪些度数的角? 归纳:对折可以平分一个角,可以把一个角平均分成2n份,从而得出折叠后角的度数。 从简单的折纸游戏出发,提高学生课堂参与度,经过学生的互相补充得出22.5,67.5,112.5等度数的角。由此引导学生发现上面的结论。此过程也让学生感受折纸可以得到角的倍分关系。 问题3:那么30的角,能否用折纸的方法折出呢?怎样折?(难点) 这个问题的提出是为了增强学生对新旧知识的
3、联系,突出所学知识的整体性、联系性,是螺旋上升的关系。(三)动手操作,实验探究1、学生尝试:最终会把矩形纸片的90角折叠的接近三等分。 追问:你能精确折出30的角吗?2、理论引导: 30所对的直角边等于斜边的一半。 也就是说如果折一个直角三角形使斜边是直角边的两倍,问题就解决了,怎样得到这样的三角形呢? 为突破重难点,做以下铺垫:(1)矩形对折,寻找边长的二倍关系ABCFDE AB=2BE(2)矩形两次对折,寻找与一次折叠不同的边长的二倍关系ABCFDEMN QP BE=2ME本次折纸活动方案的设计是对教学过程的“预设”,活动方案的形成依赖于对教材的理解、钻研和再创造。在把这个预设实施到课堂教
4、学时,往往会生成一些新的教学资源,这就需要教师能够及时把握,因势利导,进行二次备课,从而达到更好的效果。(3)利用上面得出的边长关系折出斜边等于直角边两倍的直角三角形。(安排小组交流)ABCFDEO经过学生的独立思考与小组交流,预设一下方法:预设一: AB=BO=2BEABCFDEMN QPO预设二: BE=EO=2ME(四)引发猜想,理论验证 已知:将矩形ABCD沿EF对折,折叠AB使点A落在折痕EF上。求证EOB=30证明:E是AB的中点ABCFDEO AB=2BE 又AB=OB OB=2BE 又点A、B关于直线EF对称 AEF=BEF=90 在RtBEO中,EOB=30思考:还能用什么样
5、的方法证明?问题设计的目的在于让学生对所学知识的清晰,能对知识间的练习融会贯通,体现数学学习的灵活性。(五)变式练习,学以致用 问题1:用矩形卡片能否折出等边三角形?ABCFDEOMNABCFDEO问题2:怎样折出的等边三角形才是最大的?折等边三角形是一个思维的跨越,从角到等边三角形的转化,可以使学生在获得知识、技能和方法的同时,让知识在实践中巩固内化,同时也培养了学生大胆探索、善于创造的意识。问题3:中考链接(2012山东淄博)如图,将正方形对折后展开(图是连续两次对折后再展开),再按图示方法折叠,能够得到一个直角三角形,且它的一条直角边等于斜边的一半这样的图形有【 】(A)4个(B)3个(C)2个(D)1个