吸附动力学和热力学各模型公式及特点(3页).doc

上传人:1595****071 文档编号:35656819 上传时间:2022-08-23 格式:DOC 页数:3 大小:136.50KB
返回 下载 相关 举报
吸附动力学和热力学各模型公式及特点(3页).doc_第1页
第1页 / 共3页
吸附动力学和热力学各模型公式及特点(3页).doc_第2页
第2页 / 共3页
点击查看更多>>
资源描述

《吸附动力学和热力学各模型公式及特点(3页).doc》由会员分享,可在线阅读,更多相关《吸附动力学和热力学各模型公式及特点(3页).doc(3页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、-分配系数吸附量LangmiurKL是个常数与吸附剂结合位点的亲和力有关,该模型只对均匀表面有效 Freundlich Ce反应达到平衡时溶液中残留溶质的浓度KF和n是Freundlich常数,其中KF与吸附剂的吸附亲和力大小有关,n指示吸附过程的支持力。1/n越小吸附性能越好一般认为其在0.10.5时,吸附比较容易;大于2时,难以吸附。应用最普遍,但是它适用于高度不均匀表面,而且仅对限制浓度范围(低浓度)的吸附数据有效一级动力学线性 二级动力学 线性 初始吸附速度Elovich 动力学模型 Webber-Morris动力学模型 Boyd kinetic plot令F=Qt/Qe,KBt=-0

2、.498-ln(1-F)n 准一级模型基于假定吸附受扩散步骤控制;n 准二级动力学模型假设吸附速率由吸附剂表面未被占有的吸附空位数目的平方值决定,吸附过程受化学吸附机理的控制,这种化学吸附涉及到吸附剂与吸附质之间的电子共用或电子转移;n Webber-Morris动力学模型 粒子内扩散模型中,qt与t1/2进行线性拟合,如果直线通过原点,说明颗粒内扩散是控制吸附过程的限速步骤;如果不通过原点,吸附过程受其它吸附阶段的共同控制;该模型能够描述大多数吸附过程,但是,由于吸附初期和末期物质传递的差异,试验结果往往不能完全符合拟合直线通过原点的理想情况。粒子内扩散模型最适合描述物质在颗粒内部扩散过程的

3、动力学,而对于颗粒表面、液体膜内扩散的过程往往不适合n Elovich 方程为一经验式,描述的是包括一系列反应机制的过程,如溶质在溶液体相或界面处的扩散、表面的活化与去活化作用等,它非常适用于反应过程中活化能变化较大的过程,如土壤和沉积物界面上的过程。此外,Elovich 方程还能够揭示其他动力学方程所忽视的数据的不规则性。 n Elovich和双常数模型适合于复非均相的扩散过程。Langmuir模型假定吸附剂表面均匀,吸附质之间没有相互作用,吸附是单层吸附,即吸附只发生在吸附剂的外表面。Qm 为饱和吸附量,表示单位吸附剂表面,全部铺满单分子层吸附剂时的吸附量;该模型的假设对实验条件的变化比较

4、敏感,一旦条件发生变化,模型参数则要作相应的改变,因此该模型只能适用于单分子层化学吸附的情况。Langmuir 等温吸附模型作为第一个对吸附机理做了生动形象描述的模型,为以后其他吸附模型的建立起到了奠基作用。n Freundlich 吸附方程既可以应用于单层吸附,也可以应用于不均匀表面的吸附情况。Freundlich吸附方程作为一个不均匀表面的经验吸附等温式,既能很好的描述不均匀表面的吸附机理,更适用于低浓度的吸附情况,它能够在更广的浓度范围内很好地解释实验结果。但是,Freundlich 吸附方程的缺点则是不能得出一个最大吸附量,无法估算在参数的浓度范围以外的吸附作用。由于Freundlich 等温吸附方程受低浓度的限制,而Langmuir 等温吸附方程则受高浓度的限制。RedlichPeterson 等温吸附方程则是综合Freundlich 等温吸附方程和Langmuir 等温吸附方程而提出的较合理的经验方程。A 是一个与吸附量有关的常数,B 也是一个与吸附能力有关的经验常数,指数g 为介于0 和1 之间的经验常数。避免了吸附过程受浓度限制的影响。Langmuir 方程适用于均匀表面的吸附,而Freundlich 方程和Temkin 方程适用于不均匀表面的吸附-第 3 页-

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 单元课程

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁