《【数学】2010年高考数学试题分类汇编——立体几何(解答题)(22页).doc》由会员分享,可在线阅读,更多相关《【数学】2010年高考数学试题分类汇编——立体几何(解答题)(22页).doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、-【数学】2010年高考数学试题分类汇编立体几何(解答题)-第 22 页2010年高考数学试题分类汇编立体几何(2010上海文数)20.(本大题满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分.如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用铁丝,再用平方米塑料片制成圆柱的侧面和下底面(不安装上底面).(1)当圆柱底面半径取何值时,取得最大值?并求出该最大值(结果精确到);(2)若要制作一个如图放置的,底面半径为的灯笼,请作出用于灯笼的三视图(作图时,不需考虑骨架等因素). 解析:(1) 设圆柱形灯笼的母线长为l,则l=-2r(0r0,所以“在(-,+)内
2、无极值点”等价于“在(-,+)内恒成立”。由(*)式得。又解 得即的取值范围(2010北京理数)(16)(本小题共14分) 如图,正方形ABCD和四边形ACEF所在的平面互相垂直,CEAC,EFAC,AB=,CE=EF=1.()求证:AF平面BDE;()求证:CF平面BDE;()求二面角A-BE-D的大小。证明:(I) 设AC与BD交与点G。 因为EF/AG,且EF=1,AG=AC=1. 所以四边形AGEF为平行四边形. 所以AF/平面EG, 因为平面BDE,AF平面BDE, 所以AF/平面BDE. (II)因为正方形ABCD和四边形ACEF所在的平面 相互垂直,且CEAC, 所以CE平面AB
3、CD. 如图,以C为原点,建立空间直角坐标系C-. 则C(0,0,0),A(,0),B(0,0). 所以,. 所以, 所以,. 所以BDE.(III) 由(II)知,是平面BDE的一个法向量. 设平面ABE的法向量,则,. 即所以且 令则. 所以. 从而。 因为二面角为锐角, 所以二面角的大小为.(2010四川理数)(18)(本小题满分12分)已知正方体ABCDABCD的棱长为1,点M是棱AA的中点,点O是对角线BD的中点.()求证:OM为异面直线AA和BD的公垂线;()求二面角MBCB的大小;()求三棱锥MOBC的体积.本小题主要考查异面直线、直线与平面垂直、二面角、正方体、三棱锥体积等基础
4、知识,并考查空间想象能力和逻辑推理能力,考查应用向量知识解决数学问题的能力。解法一:(1)连结AC,取AC中点K,则K为BD的中点,连结OK因为M是棱AA的中点,点O是BD的中点所以AM所以MO由AAAK,得MOAA因为AKBD,AKBB,所以AK平面BDDB所以AKBD所以MOBD又因为OM是异面直线AA和BD都相交故OM为异面直线AA和BD的公垂线(2)取BB中点N,连结MN,则MN平面BCCB过点N作NHBC于H,连结MH则由三垂线定理得BCMH从而,MHN为二面角M-BC-B的平面角MN=1,NH=Bnsin45=在RtMNH中,tanMHN=故二面角M-BC-B的大小为arctan2
5、(3)易知,SOBC=SOAD,且OBC和OAD都在平面BCDA内点O到平面MAD距离hVM-OBC=VM-OAD=VO-MAD=SMADh=解法二:以点D为坐标原点,建立如图所示空间直角坐标系D-xyz则A(1,0,0),B(1,1,0),C(0,1,0),A(1,0,1),C(0,1,1),D(0,0,1)(1)因为点M是棱AA的中点,点O是BD的中点所以M(1,0, ),O(,),=(0,0,1),=(-1,-1,1) =0, +0=0所以OMAA,OMBD又因为OM与异面直线AA和BD都相交故OM为异面直线AA和BD的公垂线.4分(2)设平面BMC的一个法向量为=(x,y,z)=(0,
6、-1,), (1,0,1) 即取z2,则x2,y1,从而=(2,1,2)取平面BCB的一个法向量为(0,1,0)cos由图可知,二面角M-BC-B的平面角为锐角故二面角M-BC-B的大小为arccos9分(3)易知,SOBCSBCDA设平面OBC的一个法向量为(x1,y1,z1)(1,1,1), (1,0,0) 即取z11,得y11,从而(0,1,1)点M到平面OBC的距离dVMOBC12分(2010天津文数)(19)(本小题满分12分)如图,在五面体ABCDEF中,四边形ADEF是正方形,FA平面ABCD,BCAD,CD=1,AD=,BADCDA45.()求异面直线CE与AF所成角的余弦值;
7、 ()证明CD平面ABF;()求二面角B-EF-A的正切值。【解析】本小题主要考查异面直线所成的角、直线与平面垂直、二面角等基础知识,考查空间想象能力,运算能力和推理论证能力.满分12分.为异面直线CE与AF所成的角.因为FA平面ABCD,所以FACD.在RtCDE中,CD=1,ED=,CE=3,故cos=.所以异面直线CE和AF所成角的余弦值为.()证明:过点B作BG/CD,交AD于点G,则.由,可得BGAB,从而CDAB,又CDFA,FAAB=A,所以CD平面ABF.()解:由()及已知,可得AG=,即G为AD的中点.取EF的中点N,连接GN,则GNNMEF,交BC于M,则为二面角B-EF
8、-A的平面角。连接GM,可得AD平面GNM,故ADGM.由已知,可得GM=.由NG/FA,FAGM,得NGGM.在RtNGM中,tan,所以二面角B-EF-A的正切值为.(2010天津理数)(19)(本小题满分12分)如图,在长方体中,、分别是棱,上的点,,(1) 求异面直线与所成角的余弦值;(2) 证明平面(3) 求二面角的正弦值。【解析】本小题主要考查异面直线所成的角、直线与平面垂直、二面角等基础知识,考查用空间向量解决立体几何问题的方法,考查空间想象能力、运算能力和推理论证能力,满分12分。方法一:如图所示,建立空间直角坐标系,点A为坐标原点,设,依题意得,(1) 解:易得,于是 所以异
9、面直线与所成角的余弦值为(2) 证明:已知,于是=0,=0.因此,,又所以平面(3)解:设平面的法向量,则,即不妨令X=1,可得。由(2)可知,为平面的一个法向量。于是,从而所以二面角的正弦值为方法二:(1)解:设AB=1,可得AD=2,AA1=4,CF=1.CE=链接B1C,BC1,设B1C与BC1交于点M,易知A1DB1C,由,可知EFBC1.故是异面直线EF与A1D所成的角,易知BM=CM=,所以 ,所以异面直线FE与A1D所成角的余弦值为(2)证明:连接AC,设AC与DE交点N 因为,所以,从而,又由于,所以,故ACDE,又因为CC1DE且,所以DE平面ACF,从而AFDE.连接BF,
10、同理可证B1C平面ABF,从而AFB1C,所以AFA1D因为,所以AF平面A1ED(3)解:连接A1N.FN,由(2)可知DE平面ACF,又NF平面ACF, A1N平面ACF,所以DENF,DEA1N,故为二面角A1-ED-F的平面角易知,所以,又所以,在连接A1C1,A1F 在。所以所以二面角A1-DE-F正弦值为(2010广东理数)18.(本小题满分14分)如图5,是半径为a的半圆,AC为直径,点E为的中点,点B和点C为线段AD的三等分点平面AEC外一点F满足,FE=a 图5 (1)证明:EBFD;(2)已知点Q,R分别为线段FE,FB上的点,使得,求平面与平面所成二面角的正弦值(2)设平
11、面与平面RQD的交线为.由BQ=FE,FR=FB知, .而平面,平面,而平面平面= ,由(1)知,平面,平面,而平面, 平面,是平面与平面所成二面角的平面角在中,故平面与平面所成二面角的正弦值是 (2010广东文数)18.(本小题满分14分)如图4,弧AEC是半径为的半圆,AC为直径,点E为弧AC的中点,点B和点C为线段AD的三等分点,平面AEC外一点F满足FC平面BED,FB=(1)证明:EBFD(2)求点B到平面FED的距离. (1)证明:点E为弧AC的中点(2010福建文数)20 (本小题满分12分)如图,在长方体ABCD A1B1C1D1中,E,H分别是棱A1B1,D1C1上的点(点E
12、与B1不重合),且EH/A1D1。过EH的平面与棱BB1,CC1相交,交点分别为F,G。 (I)证明:AD/平面EFGH; (II)设AB=2AA1=2a。在长方体ABCD-A1B1C1D1内随机选取一点,记该点取自于几何体A1ABFE D1DCGH内的概率为p。当点E,F分别在棱A1B1, B1B上运动且满足EF=a时,求p的最小值。(2010全国卷1理数)(19)(本小题满分12分)如图,四棱锥S-ABCD中,SD底面ABCD,AB/DC,ADDC,AB=AD=1,DC=SD=2,E为棱SB上的一点,平面EDC平面SBC .()证明:SE=2EB;()求二面角A-DE-C的大小 .(201
13、0四川文数)(18)(本小题满分12分)在正方体ABCDABCD中,点M是棱AA的中点,点O是对角线BD的中点.()求证:OM为异面直线AA和BD的公垂线;()求二面角MBCB的大小;(2010湖北文数)18.(本小题满分12分) 如图,在四面体ABOC中,OCOA。OCOB,AOB=120,且OA=OB=OC=1()设P为AC的中点,Q在AB上且AB=3AQ,证明:PQOA;()求二面角O-AC-B的平面角的余弦值。(2010山东理数)(19)(本小题满分12分)如图,在五棱锥PABCDE中,PA平面ABCDE,ABCD,ACED,AEBC, ABC=45,AB=2,BC=2AE=4,三角形
14、PAB是等腰三角形()求证:平面PCD平面PAC;()求直线PB与平面PCD所成角的大小;()求四棱锥PACDE的体积【解析】()证明:因为ABC=45,AB=2,BC=4,所以在中,由余弦定理得:,解得,所以,即,又PA平面ABCDE,所以PA,又PA,所以,又ABCD,所以,又因为,所以平面PCD平面PAC;()由()知平面PCD平面PAC,所以在平面PAC内,过点A作于H,则,又ABCD,AB平面内,所以AB平行于平面,所以点A到平面的距离等于点B到平面的距离,过点B作BO平面于点O,则为所求角,且,又容易求得,所以,即=,所以直线PB与平面PCD所成角的大小为;()由()知,所以,又A
15、CED,所以四边形ACDE是直角梯形,又容易求得,AC=,所以四边形ACDE的面积为,所以四棱锥PACDE的体积为=。(2010湖南理数)(2010湖北理数)18 (本小题满分12分)如图, 在四面体ABOC中, , 且()设为为的中点, 证明: 在上存在一点,使,并计算的值;()求二面角的平面角的余弦值。(2010福建理数)概率为。(i)当点C在圆周上运动时,求的最大值;(ii)记平面与平面所成的角为,当取最大值时,求的值。【命题意图】本小题主要考查直线与直线、直线与平面、平面与平面的位置关系,以及几何体的体积、几何概型等基础知识,考查空间想象能力、运算求解能力、推理论证能力,考查数形结合思
16、想、化归与转化思想、必然与或然思想。【解析】()因为平面ABC,平面ABC,所以,因为AB是圆O直径,所以,又,所以平面,而平面,所以平面平面。()(i)设圆柱的底面半径为,则AB=,故三棱柱的体积为=,又因为,所以=,当且仅当时等号成立,从而,而圆柱的体积,故=当且仅当,即时等号成立,所以的最大值是。(ii)由(i)可知,取最大值时,于是以O为坐标原点,建立空间直角坐标系(如图),则C(r,0,0),B(0,r,0),(0,r,2r),因为平面,所以是平面的一个法向量,设平面的法向量,由,故,取得平面的一个法向量为,因为,所以。(2010安徽理数)18、(本小题满分12分) 如图,在多面体中
17、,四边形是正方形,为的中点。 ()求证:平面;()求证:平面;()求二面角的大小。(2010江苏卷)16、(本小题满分14分)如图,在四棱锥P-ABCD中,PD平面ABCD,PD=DC=BC=1,AB=2,ABDC,BCD=900。(1) 求证:PCBC;(2) 求点A到平面PBC的距离。解析 本小题主要考查直线与平面、平面与平面的位置关系,考查几何体的体积,考查空间想象能力、推理论证能力和运算能力。满分14分。(1)证明:因为PD平面ABCD,BC平面ABCD,所以PDBC。由BCD=900,得CDBC,又PDDC=D,PD、DC平面PCD,所以BC平面PCD。因为PC平面PCD,故PCBC
18、。(2)(方法一)分别取AB、PC的中点E、F,连DE、DF,则:易证DECB,DE平面PBC,点D、E到平面PBC的距离相等。又点A到平面PBC的距离等于E到平面PBC的距离的2倍。由(1)知:BC平面PCD,所以平面PBC平面PCD于PC,因为PD=DC,PF=FC,所以DFPC,所以DF平面PBC于F。易知DF=,故点A到平面PBC的距离等于。(方法二)体积法:连结AC。设点A到平面PBC的距离为h。因为ABDC,BCD=900,所以ABC=900。从而AB=2,BC=1,得的面积。由PD平面ABCD及PD=1,得三棱锥P-ABC的体积。因为PD平面ABCD,DC平面ABCD,所以PDDC。又PD=DC=1,所以。由PCBC,BC=1,得的面积。由,得,故点A到平面PBC的距离等于。ww