《SBR法处理某城市生活污水工艺方案设计(29页).doc》由会员分享,可在线阅读,更多相关《SBR法处理某城市生活污水工艺方案设计(29页).doc(29页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、-SBR法处理某城市生活污水工艺方案设计-第 - 29 - 页目 录第一章 设计任务书 41.1 设计题目 4 4 5 5 5 5 6第二章 处理工艺的选择与确定 6 2.1 方案确定的原则 6 6 2.3 污水处理工艺流程的确定 7 2.4 主要构筑物 8第三章 主要构筑物及设备的设计与计算 9 9 12 12 3.4细格栅 13 15 3.6 SBR反应池 17 3.7 消毒池 22第四章 污泥的处理与处置 26 26 30 30 第五章 污水处理厂总体布置 31 31 34 总 结 35参考文献 36第一章 设计任务书某城市污水处理厂(1) 设计日平均水量 20000 m3/d(3) 设
2、计水质 (经24小时逐时取样混合后)污水水温:1025 CODcr= 380 mg/l;Norg= 25 mg/l BOD5 = 150 mg/l; TN= 45 mg/lSS=200 mg/l TP= 8 mg/l NH3-N= 2030 mg/l pH= 69 注:以上具体数值请查对水污染控制工程课程设计任务安排。(4)处理要求 出水水质达到城镇污水处理厂污染物排放标准(GB 18918-2002)中的 一级B标准。处理后污水排入水体。注意:本次设计不考虑远期状况。CODcr= 60 mg/l;NH3-N= 8 mg/l BOD5 = 20 mg/l; TN= 20 mg/lSS= 20
3、mg/l TP= 1.5 mg/l注:以上具体数值请查看水污染控制工程课程设计任务安排。(5)厂址 厂区附近无大片农田; 管底标高446.00m; 受纳水体位于厂区南侧,50年一遇最高水位为448.00m。(6)气象及工程地质 该区平均气压为730.2mmHg柱; 冬季最低为8; 常年主导风向为东南风; 最大风速为32m/s,平均为1.6m/s,历史最高台风12级; 厂址周围工程地质良好,适合于修建城市污水处理厂。(1)工艺流程选择 此设计选用SBR法,简述其特点及目前国内外使用该工艺的情况即可。(2)构筑物工艺设计计算;(3)水力计算;(4)高程及平面布置;(5)附属构筑物设计。(1)设计说
4、明书一份(2)图纸三张:曝气池构筑物图(2#) 平面布置图(2#) 高程图(2#)1) 设计参数选择合理。2) 设计说明书要求计算机打印出来,条理清楚,计算准确,并要求附有设计计算示意图。3) 图纸布局紧凑合理,可操作性强。格式规范,表达准确、规范。标注及说明全部用仿宋体书写。4) 同组同学不得有抄袭现象。总时间:第6学期 16-17周(6.9-6.22) 第16周(6.9-6.15)6.9:安排设计任务;6.10(星期二下午):确定具体处理工艺,指导教师确认;6.9-6.13:查找资料,进行设计计算,编制设计说明书;6.13(星期五下午):中期检查(重点:说明书的编制);6.14-6.15;
5、修改说明书,开始绘图;第17周(6.16-6.22)6.16-6.18:绘制CAD图; 6.18(星期三下午):图纸抽查;6.20(星期五下午):上交设计,进行答辩;6.21-6.22:修改设计,上交定稿。1 教材水污染控制工程;2 水污染防治手册;3 环境工程设计手册;4 给水排水制图标准;5 建筑给水排水设计规范(GBJ15-88);6 本专业相关期刊。第二章 处理工艺的选择与确定(1)采用先进、稳妥的处理工艺,经济合理,安全可靠。(2)合理布局,投资低,占地少。(3)降低能耗和处理成本。(4)综合利用,无二次污染。(5)综合国情,提高自动化管理水平。的确定城市污水的生物处理技术是以污水中
6、含有的污染物作为营养源,利用微生物的代谢作用使污染物降解,它是城市污水处理的主要手段,是水资源可持续发展的重要保证。城市二级污水处理厂常用的方法有:传统活性污泥法、AB法、氧化沟法、SBR法等等。下面对传统活性污泥法和SBR法两种方案进行比较,以便确定污水的处理工艺。SBR法的方案特点:(1)理想的推流过程使生化反应推动力增大,效率提高,池内厌氧、好氧处于交替状态,净化效果好。 (2) 运行效果稳定,污水在理想的静止状态下沉淀,需要时间短、效率高,出水水质好。 (3) 耐冲击负荷,池内有滞留的处理水,对污水有稀释、缓冲作用,有效抵抗水量和有机污物的冲击。 (4) 工艺过程中的各工序可根据水质、
7、水量进行调整,运行灵活。 (5) 处理设备少,构造简单,便于操作和维护管理。 (6) 反应池内存在DO、BOD5浓度梯度,有效控制活性污泥膨胀。 (7) SBR法系统本身也适合于组合式构造方法,利于废水处理厂的扩建和改造。 (8) 脱氮除磷,适当控制运行方式,实现好氧、缺氧、厌氧状态交替,具有良好的脱氮除磷效果。 (9) 工艺流程简单、造价低。主体设备只有一个序批式间歇反应器,无二沉池、污泥回流系统,调节池、初沉池也可省略,布置紧凑、占地面积省。从上面的对比中我们可以得到如下结论:从工艺技术角度考虑,普通曝气法和SBR法出水指标均能满足设计要求。但是,SBR法结构简单,造价低,又适合中小型污水
8、处理厂,这跟实际相符,所以选SBR法。SBR是序列间歇式活性污泥法(Sequencing Batch Reactor Activated Sludge Process)的简称,是一种按间歇曝气方式来运行的活性污泥污水处理技术,又称序批式活性污泥法。与传统污水处理工艺不同,SBR技术采用时间分割的操作方式替代空间分割的操作方式,非稳定生化反应替代稳态生化反应,静置理想沉淀替代传统的动态沉淀。它的主要特征是在运行上的有序和间歇操作,进水、反应、沉淀、排水及空载5个工序,依次在同一SBR反应池中周期运行, SBR技术的核心是SBR反应池,该池集均化、初沉、生物降解、二沉等功能于一池,无污泥回流系统,
9、流程简单。污水工艺流程的确定主要依据污水水量、水质及变化规律,以及对出水水质和对污泥的处理要求来确定。本着上述原则,本设计选SBR法作为污水处理工艺。污水粗格栅泵巴氏计量槽细格栅沉砂池SBR反应池消毒池出水污泥外运污泥脱水污泥泵污泥浓缩2.4 主要构筑物的选择格栅格栅用以去除废水中较大的悬浮物、漂浮物、纤维物质和固体颗粒物质,以保证后续处理单元和水泵的正常运行,减轻后续处理单元的负荷,防止阻塞排泥管道。本设计中在泵前设置一道中格栅。由于污水量大,相应的栅渣量也较大,故采用机械格栅。栅前栅后各设闸板供格栅检修时用,每个格栅的渠道内设液位计,控制格栅的运行。格栅间配有一台螺旋输送机输送栅渣。螺旋格
10、栅压榨输送出的栅渣经螺旋运输机送入渣斗,打包外运。泵房考虑到水力条件、工程造价和布局的合理性,采用长方形泵房。为充分利用时间,选择集水池与机械间合建的半地下式泵房,这种泵房布置紧凑,占地少,机构省,操作方便。水泵及吸水管的充水采用自灌式,其优点是启动及时可靠,不需引水的辅助设备,操作简便。沉砂池沉砂池的形式有平流式、竖流式和曝气沉砂池。其作用是从污水中去除沙子,渣量等比重较大的颗粒,以免这些杂质影响后续处理构筑物的正常运行。工作原理是以重力分离为基础,即将进入沉砂池的污水流速控制在只能使比重大的无机颗粒下沉,而有机悬浮颗粒则随水流带走。设计中采用的平流式沉砂池是最常用的一种形式,它的截留效果好
11、,工作稳定,构造简单。池的上部是一个加宽了的明渠,两端设有闸门以控制水流。池的底部设置贮砂斗,下接排砂管。 SBR池 本设计采用SBR法(又称序批式活性污泥法),该法对BOD的处理效果可达90%以上。SBR工艺的曝气池,在流态上属于完全混合,在有机物降解上,却是时间上的的推流,有机物是随着时间的推移而被降解的。推流式曝气特点是:废水浓度自池首至池尾是逐渐下降的,由于在曝气池内存在这种浓度梯度,废水降解反应的推动力较大,效率较高;推流式曝气池可采用多种运行方式;对废水的处理方式较灵活;由于沿池长均匀供氧,会出现池首供气不足,池尾供气过量的现象,增加动力费用的现象。完全混合式曝气池的特点是:冲击负
12、荷的能力较强;由于全池需氧要求相同,能节省动力;曝气池与沉淀池合建,不需要单独设置污泥回流系统,便于运行管理;连续进水、出水可能造成短路;易引起污泥膨胀;适于处理工业废水,特别是高浓度的有机废水。曝气系统采用鼓风曝气,选择其中的网状微孔空。接触池城市污水经二级处理后,水质改善,但仍有存在病原菌的可能,因此在排放前需进行消毒处理。液氯是目前国内外应用最广泛的消毒剂,它是氯气经压缩液化后,贮存在氯瓶中,氯气溶解在水中后,水解为Hcl和次氯酸,其中次氯酸起主要消毒作用。氯气投加量一般控制在1-5mg/L,接触时间为30分钟.浓缩池浓缩池的形式有重力浓缩池,气浮浓缩池和离心浓缩池等。重力浓缩池是污水处
13、理工艺中常用的一种污泥浓缩方法,按运行方式分为连续式和间歇式,前者适用于大中型污水厂,后者适用于小型污水厂和工业企业的污水处理厂。浮选浓缩适用于疏水性污泥或者悬浊液很难沉降且易于混合的场合,例如,接触氧化污泥、延时曝起污泥和一些工业的废油脂等。离心浓缩主要适用于场地狭小的场合,其最大不足是能耗高,一般达到同样效果,其电耗为其它法的10倍。从适用对象和经济上考虑,故本设计采用重力浓缩池。形式采用间歇式的,其特点是浓缩结构简单,操作方便,动力消耗小,运行费用低,贮存污泥能力强。采用水密性钢筋混凝土建造,设有进泥管、排泥管和排上清夜管。污泥脱水 污泥机械脱水与自然干化相比较,其优点是脱水效率较高,效
14、果好,不受气候影响,占地面积小。常用设备有真空过滤脱水机、加压过滤脱水机及带式压滤机等。本设计采用带式压滤机,其特点是:滤带可以回旋,脱水效率高;噪音小;省能源;附属设备少,操作管理维修方便,但需正确选用有机高分子混凝剂。另外,为防止突发事故,设置事故干化场,使污泥自然干化。第三章 主要构筑物及设备的设计与计算31 粗格栅图3-1格栅计算示意图311 格栅尺寸(1)最大设计流量: (2)栅条间隙数n 式中:栅条间隙数,个;格栅倾角,取= 60;栅条间隙, ,取;栅前水深,取;过栅流速,取;生活污水流量总变化系数,根据设计任务书=1.5。则 (3)有效栅宽 式中:栅条宽度,取0.01 。则: 3
15、12 通过格栅的水头损失 式中:设计水头损失,;形状系数,栅条形状选用正方形断面所以,其中=0.64;系数,格栅受污物堵塞时水头损失增大倍数,一般采用=3;重力加速度,取;则: ,符合设计要求。313 栅后槽总高度 式中:栅前渠道超高,取。则: =0.4+0.082+0.3=0.782。314 栅槽总长度 式中: 进水渠道渐宽部分的长度,;进水渠宽,取;进水渠道渐宽部分的展开角度,取=20;栅槽与进水渠道连接处的渐窄部分长度,;栅前渠道深,.则:=315 每日栅渣量 式中:栅渣量,取。则: 格栅的日栅渣量为: , 宜采用机械清渣。316 格栅的选择表3-1 HG-1400型回转格栅技术参数项目
16、格栅宽度 栅条间距安装角 电机功率 参数1400 90060-7532提升泵房设计水量为,选用2台潜水排污泵(一用一备),则流量为。所需的扬程为4.34m(见水力计算和高程计算)。泵的选型如下:表3-2型号排出口径(mm)流量(m3/h)扬程(m)转速(r/min)功率(kw)250QW600-7-222501260797022 3. 3巴氏计量槽计量槽主要部分尺寸:A1渐缩部分长度,mA2喉部长度,mA3渐扩部分长度,mb B1上游渠道宽度,mB2下游渠道宽度,m计量槽总长度计量槽应设在渠道的直线段上,直线段的长度不应小于渠道宽度的810倍,在计量槽上游,直线段不小于渠宽的23倍;下游不小于
17、45倍。计量槽上游直线段长为 计量槽下游直线段长为 计量槽总长为 计量槽的水位H1 则: H1上游水深,m当b=0.32.5m时,时为自由流:0.35m=0.245m 取H2H2下游水深,m渠道水力计算(1) 上游渠道:过水断面面积A: 湿周f: 水力半径R: 流速v: 水力坡度i : n(2) 下游渠道:过水断面面积A : 湿周f : 水力半径R: 流速v: 水力坡度i : 水厂出水管采用重力流铸铁管,流量Q=0.35m/s,DN=250 3. 4细格栅(本设计采用2个细格栅)3. 4. 1单个格栅的隔栅尺寸(1)最大设计流量:3/s(2)栅条间隙数n 式中:栅条间隙数,个;格栅倾角,取=
18、60;栅条间隙, ,取;栅前水深,取;过栅流速,取;生活污水流量总变化系数,根据设计任务书=1.5。则 (3)有效栅宽 式中:栅条宽度,取0.01 。则: 45=0.89 342 通过格栅的水头损失 式中:设计水头损失,;形状系数,取=1.67(由于选用断面为迎水背水面均为半圆形的矩形)。系数,格栅受污物堵塞时水头损失增大倍数,一般采用=3;重力加速度,取;阻力系数,其值与栅条断面形状有关;则 m343 栅后槽总高度 式中:栅前渠道超高,取。则: 。344 栅槽总长度 式中: 进水渠道渐宽部分的长度,;进水渠宽,取;进水渠道渐宽部分的展开角度,取=20;栅槽与进水渠道连接处的渐窄部分长度,;栅
19、前渠道深,.则:=m345 每日栅渣量 式中:栅渣量,取。则: , 宜采用机械清渣。表3-3 HG-1000型回转式机械格栅技术参数项目设备宽度 栅条间距安装角 电机功率 参数1000106035 沉砂池351 计算(1) 池子长度 L式中:最大设计流量时的水平流速,取。最大设计流量时的流行时间,取=40s。则: (2) 水流断面面积 式中:最大设计流量,=0.35;则: (3) 池子总宽度 式中:池子分格数,个,设置=2。 池子单格宽度,b=0.8m。 则: (4) 有效水深则: 352 沉沙室计算 (1) 沉沙量式中:城市污水沉砂量,取=30;生活污水流量总变化系数,由设计任务=1.5。沉
20、砂周期,取。则:(2) 每个砂斗所需容积式中:砂斗个数,设沉砂池每个格含两个沉砂斗,有2个分格,沉砂斗个数为4个则:(3)沉砂斗各部分尺寸a.沉砂斗上口宽:式中:b1斗底宽, 取b1; 斗高, 取 。 斗壁与水平面的倾角。则:b.沉砂斗容积:式中: 斗高, 取 ; b2沉砂斗上口宽,。(4)沉砂室高度采用重力排砂,设斗底坡度为0.06,坡向砂斗,式中:b2每个沉砂斗, 取b2; 斗高, 取 ; 两沉砂斗之间的平台长度,取。则: 353 池体总高度式中:超高,取;有效水深,; 沉砂室高度,。则:3 . 6 SBR反应池(1)曝气池运行周期反应器个数,周期时间,周期数,每周期处理水量,每周期分为进
21、水、曝气、沉淀、排水4个阶段。其中进水时间根据滗水器设备性能,排水时间MLSS取4000mg/L,污泥界面沉降速度:曝气滗水高度,安全水深,沉淀时间为曝气时间: 反应时间:(2)曝气池体积V 二沉池出水由溶解性和悬浮性组成,其中只有溶解性与工艺计算有关,出水溶解性可用下式估算:式中:出水溶解性二沉池出水,取=20mg/L二沉池出水SS中VSS所占比例,取二沉池出水SS,取=20mg/L进水TN较高,为满足硝化要求,曝气段污泥龄污泥产率系数Y=0.6,活性污泥自身氧化系数=0.06,曝气池体积:(3)复核滗水高度,曝气池共设4座即=4,有效水深H=5m,复核结果与设定相同(4)复核污泥负荷(5)
22、剩余污泥产量(剩余污泥由生物污泥和非生物污泥组成) 剩余污泥计算公式kd-活性污泥自身氧化系数,kd与水温有关,水温为20,.根据室外排水设计规范(GB)14-1987,1997年版的有关规定,不同水温时应进行修正,本例污水温度,要满足最低水温的要求,所以取T=10.则剩余生物污泥是: 剩余非生物污泥用计算公式: 式中:设计进水ss, ,取=200 进水vss中可生化部分比例,设剩余污泥总量:剩余污泥含水率按99.2%计算,湿污泥为(6)复核出水 复核结果表明,出水可以达到设计要求。(7)复核出水(8)设计需养量 设计需养量包括氧化有机物需养量,污泥自身需养量、氨氮硝化需养量和出水带走的氧量,
23、有机物氧化需氧系数=0.5,污泥需氧系数=0.12,氧化有机物和污泥需氧量为:进水总氮,出水氨氮硝化氨氮需氧量是: 反硝化产生的氧量 总需氧量是(9)标准需氧量式中:20时氧在消水中饱和溶解度,=9.17mg/L(查附录十二) 氧总转移系数, 氧在污水中饱和溶解度修正系数, 因海拔高度不同而引起的压力系数,按下式计算: P所在地区大气压力, T设计污水温度 设计水温条件下曝气池内平均溶解氧饱和度,mg/L,按下式计算: 设计水温条件下氧在清水中饱和溶解度 空气扩散装置处的绝对压力,= H空气扩散装置淹没深度,m 气泡离开水面时含氧量,%,按下式计算 空气扩散装置氧转换效率,%,可由设备样本查得
24、; C曝气池内平均溶解氧浓度,C=20mg/L,即 压力修正系数: 微孔曝气头氧转移效率为20%,气泡离开水面时含氧量:最高水温,清水氧饱和度为8.4mg/L,曝气池内平均溶解氧饱和度:最高水温时标准需氧量空气用量(10)曝气池布置有效体积5500 ,4座总有效体积22000(11)空气管路计算每座需气量反应池平面面积5022设600个空气扩散器,则每个配气量为选WB型微孔曝气装置。每个池共25根干管,在每根干管上共24个扩散器,每边各12个。表3-4 WB型微孔曝气装置主要技术参数表型号直径曝气量m3/只h服务面积m2/只平均孔径um氧利用率动力效率kgO2/m3h空隙率%阻力mm/H2OW
25、B微孔曝气装置2001315023%30%36405013628037接触池3. 7. 1消毒剂的投加(1)加氯量计算 二级处理出水采用液氯消毒时,液氯投加量一般为510。每日加氯量为: 式中: 每日加氯量,; 液氯投加量,; 污水设计流量,。(2) 加氯设备 液氯由真空转子加氯机加入,加氯机设计2台,采用一用一备,则每小时加氯量为:接触池尺寸 竖流式消毒池适用于小型污水厂,设计选择4个消毒池。污水经过集配水井分配流量后流入竖流式消毒池,单池流量为式中:设计流量,; 单池设计流量, ; n消毒池个数。,n=4 =3/h(1) 中心进水管面积式中:消毒池中心进水管面积,; 单池设计流量, ;中心
26、进水管流速, ,一般采用。设计中取,式中: 中心进水管直径,;(2) 中心进水管喇叭口与反射板之间的板缝高度 式中: 中心进水管喇叭口与反射板之间的板缝高度,; 污水从中心进水管喇叭口与反射板之间缝隙流出速度; 喇叭口直径,一般采用; 反射板直径,一般采用; 单板设计流量,。 设计中取,(3) 消毒接触池有效断面式中: 消毒接触池有效断面,; 污水在消毒接触池内流速,; 单板设计流量,。 设计中取,(4)消毒接触池边长式中: 消毒接触池边长,一般采用。(4) 消毒接触池有效水深式中: 消毒接触池有效水深,; 消毒时间,。 设计中取校核消毒接触池边长与水深之比,(7) 污泥斗容积,污泥斗倾角。式
27、中: 污泥斗容积,; 污泥斗高,; 污泥斗上口边长,; 污泥斗下口边长,;设计中由于污泥体积较小,设计中取,设计中取污泥斗高边坡高度 式中: 池底边坡坡度,一般采用0.05。(8) 接触池总高度式中: H接触池的总高度(m);接触池超高(m)。设计中取=0.3 m(9) 出水堰 沉淀池出水经过出水堰跌落进入集水槽,然后汇入出水管排出。出水堰采用单侧90三角形出水堰,三角堰顶宽0.16m,深0.08m,集水槽设在周边,集水槽宽度0.3m,每格沉淀池有三角堰数量式中 : B接触池边长,; 集水槽宽度,;三角堰单堰长度,;n三角堰数量,个;设计中取=8.4 m, ,.三角堰流量为: 式中: 三角堰流
28、量,;三角堰数量上水深,;H1,则出书堰水头损失为0.132m,设计中取0.14m.(10)出水渠道接触池表面设周边集水槽,采用单侧集水,出水渠集水量出水渠道宽0.6m,水深0.4m,水平流速0.52m/s。出水渠道将三角堰出水汇集送入出水管,出水管道采用钢管,管径,管内流速。(11)排泥管排泥管伸如污泥斗底部,为防止排泥管堵塞,排泥管径设为200mm。第四章 污泥的处理与处置污泥浓缩的对象是颗粒见的孔隙水,浓缩的目的是在于缩小污泥的体积,便于后续污泥处理。常用的污泥浓缩池分为竖流浓缩池和幅流浓缩池2种。二沉池排出的剩余污泥含水率高,污泥数量较大,需要进行浓缩处理;初沉污泥含水量较低,可以不采
29、用浓缩处理。设计中一般采用浓缩池处理剩余活性污泥。浓缩前污泥含水率,浓缩后污泥含水率。3/s,采用2个浓缩池,则单池流量:Q13/s。式中: f-浓缩池中心进泥管面积; -中心进泥管设计流量; -中心进泥管流速 ,一般采用; -中心进泥管直径(m)设计中取 。 2 每池的进泥管采用DN200管内流速2中心进泥管喇叭口与反射板之间的缝隙高度式中:-中心进泥管喇叭口与反射板之间的板缝高度(m);-污泥从中心管喇叭口与反射板之间缝隙流出速度; -喇叭口直径(m),一般采用。设计中取,3浓缩后分离出的污水量式中:q-浓缩后分离出的污水量; Q-进入浓缩池的污泥量; P-浓缩前污泥含水率,一般采用; -
30、浓缩后污泥含水率,一般采用4浓缩池水流部分面积式中:-浓缩池水流面积; v-污水在浓缩池内上升流速,一般采用 F= 5浓缩池直径式中:D-浓缩池直径(m); ,设计中取为5.0m。6有效水深式中:-浓缩池的有效水深(m);t-浓缩时间(h),一般采用1016h; 设计中取t=10 h7浓缩后剩余污泥量式中:-单池浓缩后剩余污泥量();8浓缩池污泥斗容积 污泥斗设在浓缩池的底部,采用重力排泥。式中: -污泥斗高度(m); -污泥斗倾角,圆型池体污泥斗倾角0.5m; R-浓缩池半径(m)。 设计采用 m污泥斗容积为:9污泥在污泥斗中停留的时间式中:V-污泥斗容积(); T-污泥在泥斗中的停留时间(
31、h)。10浓缩池总高度式中:h-浓缩池高度(m); -超高(m); -缓冲层高度(m)。 设计中取=0.3 m,=0.3 m11溢流堰浓缩池溢流出水经过溢流堰进入出水槽,然后汇入出水管排出。出水槽流量 , 设出水槽宽b=0.15m,水深0.05m,则水流速为0.24m/s。溢流堰周长 式中: c溢流堰周长 (m); D浓缩池直径 (m) b出水槽宽 (m)。 溢流堰采用单侧三角形出水堰,三角堰顶宽0.16m,深0.08m,每格沉淀池有110个三角堰。三角堰流量为: 式中:每个三角堰流量 () 三角堰水深 (m)12. 溢流管,设溢流管管径DN200mm,管内流速,污泥管道选用DN150mm,每
32、次排泥时间0.5h,每日排泥2次,间隔时间12h. 每次排泥量 管内流速 4. 2脱水机房4. 2. 1压滤 过滤流量为 设置两台压滤机,每台每天工作15,则每台压滤机处理量为表4-1 YDP-1000型带式压滤脱水机各参数型号过滤有效宽mm滤带速度m/min-1主机功率kw处理量m3h-1重量tYDP-10001.0 3.5 344.9 4. 2. 2加药量计算 设计流量为 絮凝剂 PAM 投加量 以干固体的0.4%计,即4. 3附属建筑物 污水处理厂除污水处理和污泥处理所必需的构筑物外,还包括诸如办公室、维修间、仓库、锅炉房以及其他附属设施和生活服务设施。有关附属建筑物的设计按建设部城镇污
33、水处理厂附属建筑物和附属设备设计标准(CJJ31-90)进行。第五章 污水处理厂总体布置平面布置的一般原则 (1)按功能区分,配置得当; (2)功能明确,布置紧凑; (3)顺流排列,流程简捷; (4)充分利用地形,降低工程费用;(5)必要时应预留适当余地,考虑扩建和施工可能;(6)构筑物布置应注意风向和朝向。平面布置污水处理厂的平面布置在工艺设计计算之后进行,根据工艺流程,单位功能要求及单位平面图进行。(1) 污水区的位置污水区按污水处理流程方向布置,污水进口处于厂区左册,个建筑物见布局紧凑,连接管道较短。(2) 污泥区的布置污泥区位于厂区后面,避免污泥区的臭气污染生活区。(3) 生活区的布置
34、生活区位于厂区前部,处于主导风向的上风向,卫生条件较好,生活区包括办公、实验、生活、休闲场所。 在污水处理厂的平面布置上,具体说明如下:a.厂区内绿地面积占厂区面积的30%以上;b.厂区内主要构筑物间距510米;c.厂区内主干道为8米。高程布置原则(1)保证处理水在常年绝大多数时间里能自流排放水体,同时考虑污水厂扩建时的预留储备水头。(2)应考虑某一构筑物发生故障,其余构筑物须担负全部流量的情况,还应考虑管路的迂回,阻力增大的可能。因此,必须留有充分的余地。(3)处理构筑物避免跌水等浪费水头的现象,充分利用地形高差,实现自流。(4)在仔细计算预留余量的前提下,全部水头损失及原污水提升泵站的全扬程都应力求缩小。(5)应考虑土方平衡,并考虑有利排水。污水污泥处理系统高程布置污水污泥处理系统高程布置见附录图。初沉池污泥以及主反应池污泥直接进入浓缩池,脱水后外运。根据以上的损失,计算出各构筑物的标高,定收纳水体标高为448m,地面为449m,提升泵须提升4.34m。表1构筑物管段间的连接情况线路管段名称管长L m流量Q l/s流速V m/s管径D mm900弯头 个阀门个三通 个水线4-A600/1A-54002/25-B4002/2B-C6002/C-64002126-D400212D-E6001/泥线b-a2002/2a-c20021/c-82002/8-d