《苏教版四年级下册《等腰三角形和等边三角形》数学教案.docx》由会员分享,可在线阅读,更多相关《苏教版四年级下册《等腰三角形和等边三角形》数学教案.docx(60页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、苏教版四年级下册等腰三角形和等边三角形数学教案四年级下册等腰三角形和等边三角形学案苏教版 四年级下册等腰三角形和等边三角形学案苏教版 教学内容:p.3032教材简析:本课相识等腰三角形和等边三角形已经它们的特征。教材先给出有两条边相等的锐角三角形、直角三角形和钝角三角形各一个,让学生量一量每个三角形各条边的长,发觉它们的共同特点是有两条边相等,然后概括等腰三角形的概念。接着通过用纸对折简出等腰三角形,使学生进一步体会等腰三角形的特征。最终相识等腰三角形各部分的名称,明确等腰三角形的两个底角也相等。相识等边深刻系的编排与等腰三角形类似,其中等边三角形的3个角都相等的特征是让学生在对折中发觉的。教
2、学重点:相识等腰三角形和等边三角形以及它们的特征教学目标:1、让学生在实际操作中相识等腰三角形和等边三角形,知道等腰三角形边和角的名称,知道等腰三角形两个底角相等,等边三角形3个内角相等。2、让学生在探究图形特征以及相关结论的活动中,进一步发展空间观念,熬炼思维实力。3、让学生在学习活动中,进一步产生对数学的新奇心,增加动手实力和创新意识。教学打算:长方形、正方形纸,剪刀、尺等教学过程:一、复习:关于三角形,你有那些学问?1、按角分成三种角2、三个内角和是180度算第三个角的度数,假如是一般三角形,那就用180去减;假如是直角三角形,那就是90去减二、相识等腰三角形:1、比较老师手边的两块三角
3、板,他们有什么相同?(都是直角三角形)有什么不同?(其中有一块三角板的两条边相等,两个角相等;而另一块三角板的角和边都不相同。)指出:像这种两条边相等的三角形,我们叫它“等腰三角形”2、折一折、剪一剪:取一张长方形纸,对折;画出它的对角线,沿对角线剪开;绽开视察:这样剪出来的三角形就是我们今日要相识的等腰三角形。想一想:为什么要对折后再剪呢?(这样剪出来的两条边确定是相等的。)除了两条边是相等的,还有什么也是相等的?你是怎么知道的?(还有两个角也是相等的,因为也是重合的。)3、画一画:探讨一下,假如我要把这个等腰三角形画下来,应当怎么画?从一个顶点动身,分别画两条同样长的边,这样就确保有两条边
4、是相等的,然后再连接这两条边,就得到了一个等腰三角形。师生共画等腰三角形。板书:等腰三角形4、教学各部分名称:读“等腰三角形”,想一想,这名字是什么意思?(两条腰相等的三角形)在图上标出:这两条相等的边,我们就叫它“腰”;这第三条边和它们是不相等的,我们叫它“底”在底边上的这两个角是相等的,就可以共用一个名字“底角”;剩下的这个角,称之为“顶角”。三、相识等边三角形:1、刚才有的同学画的等腰三角形,看上去三条边都是相等的。假如真是那样,那它还有一个名字,叫“等边三角形”2、为了确保三条边都相等,我们可以这样折:取一正方形形纸,边折边示范,并讲清晰为什么要这样折?剪下后,量一量每条边是不是真都一
5、样长?在量的过程中,你还有什么发觉?(3个角也都相等,都是60度)3、画等边三角形:很简单保证两条边相等,但保证三条边都相等有肯定的困难,所以等边三角形不好画。你有什么方法?方法一:依据角度来画。比如先画一条长3厘米的线段,然后分别画出60度的角,假如两边正好会合,正好都是3厘米,那就说明画得很精确。方法二:依据高来画。比如先画一条3厘米的线段,然后在1.5厘米处画高,从端点动身到高量出3厘米,并画下来,再画另一条,就得到了等边三角形。学生动手画一画。四、完成想想做做:1、下面物体的面,哪个是等边三角形,哪个是等腰三角形?指名说一说,并说明理由。2、用始终行正方形纸,沿对角线剪开。剪出的两个三
6、角形是等腰三角形吗?只直角三角形吗?分别请学生说说推断的理由。指出:三角形可以按角来分也可以按边来分,这是两种不同的依据可得到不同的结果。3、画出下面每个图形的另一半,使它成为一个轴对称图形,并说说这几个轴对称图形都是什么三角形。指出:既然是对称的,那确定有两条边是相等的,那就是等腰三角形。4、在点子图上画出有一个角是直角的等腰三角形,再画出每个角都是锐角的等腰三角形。老师留意巡察检查,也可请几个学生说说自己怎么画的,怎么想的?五、接着作业:第32页第5、6、7题。在写之前可先组织学生说说各题是怎么思索的。 人教版四年级下册三角形之三角形的内角和数学教案 人教版四年级下册三角形之三角形的内角和
7、数学教案 三角形的内角和 教学内容: 教材第67页的内容及第69页练习十六的第13题。 课型 新课 教学目标: 1、让学生亲自动手,通过量、剪、拼等活动发觉并证明三角形内角和是180,应用三角形内角和的学问解决实际问题。 2、通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”的数学思想。 3、让学生在动手获得学问的过程中,培育学生的创新意义、探究精神和实践实力。 教学重点: 经验“三角形内角和是180”这一学问的形成、发展和应用的全过程。 教学难点: 三角形内角和是180的探究和验证。 教具学具: 多媒体课件、剪刀、白纸、直尺。 教学过程: 一、情境导入 师:我们已经相识了什么
8、是三角形,谁能说出三角形有什么特点? 生1:三角形是由三条线段围成的图形。 生2:三角形有三个角 师:三条线段围成三角形后,在三角形内形成了三个角,们把三角形里面的这三个角分别叫做三角形的内角。 师:现在,请同学们在练习本上画一个三角形,画一个有两个内角是直角的三角形,起先。 (设置冲突,使学生在冲突中去发觉问题、探究问题) 师:有谁画出来啦? 生1:不能画。 生2:只能画两个直角。 生3:只能画长方形。 演示:请同学到黑板演示,是不是画成这个样子了?哦,只能画两个直角。 师:问题出在哪儿呢?着肯定有什么奇妙吧?想不想知道?这就是我们今日探讨的与三角形的内角和有关的数学学问。(板书课题:三角形
9、的内角和) 二、自主探究 师:你能“画几种不同类型的三角形”?自己试着画一画。 (课件出示锐角三角形、直角三角形和钝角三角形图) 生:可以画锐角三角形,也可以画直角三角形,还可以画钝角三角形。 师:在数学上,三角形的内角和就是三角形的三个内角度数的和。你能想出几种方法求出三角形的内角和? 生:可以测量出每一个内角,然后求出三个内角的和。 师:好,下面我们用量角器分别量出每种类型的三角形的三个内角,然后计算出每种类型的三角形的内角和。 强调说明:用量角器测量角的度数时,中心店对准角的顶点,0刻度线和角的一边重合,看角的另一半落在刻度线是多少度。 生:通过测量发觉,随意一个三角形,三个内角度数的和
10、都是180 师:你还能想出其他的方法得出三角形的三个内角的和是180吗? 生:用剪刀把三角形的三个内角剪下来,可以拼成同一个平角,也能得出三个内角的和是180。 师:谁能展示一下? 生1:把一个锐角三角形的三个内角剪下来,然后拼一拼发觉锐角三角形的三个内角拼成了一个平角,即180。 生2:把一个直角三角形的三个内角剪下来,发觉直角三角形的三个内角拼成了一个平角,即180。 生3:把一个钝角三角形的三个内角剪下来,发觉钝角三角形的三个内角拼成的还是平角,即180 三、探究结果汇报 师:同学们这节课有什么收获? 生:我知道了三角形的内角和是180 师:同学们通过思索探究、合作沟通,发觉了三角形内角
11、和是180,看似简洁的量量算算、剪剪拼拼,事实上是探究学问的试验方法,这样的方法在解决实际问题时有着重要的作用,希望同学们在今后的学习中驾驭更多的本事。 四、师生总结收获 师:同学们,通过三角形内角和的学习,你在数学方法上有什么收获? 生1:我学会了测量出三角形的三个内角,然后求和的方法。 生2:我还知道通过剪、拼的方法也可以得出三角形的内角和是180。 生3:通过动手操作把三角形内角和转化为平角的探究活动,渗透了“转化”的数学思想。 五、板书设计 三角形 教学目标: 1.学问目标:通过折叠探究等腰三角形、等边三角形的性质。 2.实力目标:进行操作、视察、分析、比较、沟通等教学活动,让学生在亲
12、身经验类似的创建活动过程中学习数学学问。 3.情感目标:培育学生用事试验证事物的实力,而不是用主观臆断事物的属性。 教学过程: 一、反馈作业 1师:昨天我们学习了哪些学问?对于等腰三角形和等边三角形,大家回家也做了探究型作业,对他们有了更深的了解。谁来说说你还知道些什么? 2.师:刚才也有同学谈到其实等腰三角形和等边三角形是对称图形。老师说它们可以称为轴对称图形。 二、新课探究 1师:你能不能把一个等腰 三角形折一折分成2个部分,使这2部分完全重合? 2.师:大家都可以这样做到,那么谁能指一指我们是沿着哪一条线对折才能使图形对折后完全重合的吗?(学生指) 师:我们把这条能使图形对折 后重合的直
13、线称为对称轴。(板书)我们通常用虚线来表示对称轴。(学生用虚线表示) 3.学生探究 师:你能不能用找到等腰三角形对称轴的方法来找一找等边三角形的对称轴? (学生尝试)学生沟通:你是怎样找的?你找到几条? (图形对折,是否完全重合) 3小结:等腰三角形有一条对称轴,等边三角形有三条对称轴。而三条边都不相等的三角形却一条对称轴也没有。 三、探究作业 1在生活中还有哪些是轴对称图形,也有对称轴,我请同学们回家去找一下,用剪刀和纸把它剪出来,看谁剪得最多。 2想不出的同学可以问问现在5年级的同学,他们会给你们帮助的。 人教版四年级下册三角形之三角形的分类数学教案 人教版四年级下册三角形之三角形的分类数
14、学教案 三角形的分类 教学内容: 教材第63、第64页的内容及第65页练习十五的第4、第5、第9、第10题。 课型 新课 教学目标: 1、通过实际操作、探究,驾驭三角形的分类标准及方法,体会每类三角形的特征,并能够识别直角三角形、锐角三角形、钝角三角形和等腰三角形、等边三角形。 2、通过视察、分类记录等活动,折、剪等操作,提高学生的探究精神、归纳概括实力、逻辑思维实力和空间想象实力。 3、让学生在探究的过程中,感受到学习数学的乐趣,体验胜利的喜悦,从而激发学生学好数学的热忱,同时懂得合作可以提高效率的道理。 教学重点: 通过思索、自主探究、合作沟通,分别从三角形的角和边两个方面的特征,对三角形
15、精确的地进行分类。 教学难点: 能够驾驭各种三角形的特征以及各类三角形之间的内在联系。 教具学具: 多媒体课件、各种三角形图形。 教学过程: 一、情境导入 师:假如让你把班里某一个小组的同学分成两组,你将如何分组呢? (学生回答) 师:既然如此,假如把三角形进行分类,你觉得应当按什么样的标准来分呢?为什么? (引导学生说出缘由) 师:刚才同学们说了两种方法,按边分或者按角分。这节课我们就一起来探讨三角形的分类。 (板书:三角形的分类) 二、自主探究 1、相识锐角三角形、直角三角形和钝角三角形。 课件出示例5. 师:用量角器量出每组中每一个三角形的每一个角的大小,看看三角形中每个角是多少度?各是
16、什么角 生1: 通过测量发觉,有些三角形的三个角都是锐角。 生2:有些三角形有一个直角、两个锐角。 生3:有些三角形有一个钝角、两个锐角。 师:三个角都是锐角的三角形叫锐角三角形,有一个角是直角的三角形叫直角三角形,有一个角是钝角的三角形叫钝角三角形。 2、把三角形根据角进行分类。 师:假如把全部的三角形看做一个整体,那么锐角三角形、直角三角形和钝角三角形都可以分别看作是这个整体的一部分,它们之间的关系你会画图表示吗? (课件出示三种三角形的关系图) 3、相识直角三角形的直角边和斜边。 (课件出示直角三角形图) 师:在直角三角形中,夹直角的两条边叫直角边,直角所对的边叫斜边。你能用直尺量出每条
17、边的长度吗?测量后你会发觉什么? 生:通过测量发觉,在直角三角形的三条边中,斜边最长。 4、相识等腰三角形和等边三角形。 (课件出示等腰三角形和等边三角形图) 师:视察三角形的三条边会发觉什么? 生:有的三角形的三条边都不想等,有的三角形有两条边相等,有的三角形三条边都相等。 师:在数学上,有两条边相等的三角形叫等腰三角形,有三条边相等的三角形叫等边三角形,又叫正三角形。 5、相识等腰三角形、等边三角形各个部分的名称。 师:在等腰三角形中,相等的两条边叫做三角形的腰,另一条边叫等腰三角形的底,两腰的夹角是等腰三角形的顶角,腰和底边的夹角是三角形的底角。在等边三角形中,三条都相等的边都叫三角形的
18、边。 6、等边三角形、等腰三角形之间的关系。 师:你能说说等边三角形与等腰三角形之间的关系吗? 生:两腰相等的三角形是等腰三角形,所以等边三角形师特别的等腰三角形,但是等腰三角形不肯定是等边三角形。 7、等腰三角形和等边三角形各自角的特征以及相识等腰直角三角形。 通过测量等腰三角形和等边三角形的角发觉:等腰三角形的两个底角相等;等边三角形的各个角都相等。 有些直角三角形,有两条边相等,有两个角相等,这样的三角形在数学上叫等腰直角三角形,如常用的直角三角板中的一种。 三、探究结果汇报 师:哪一组的同学情愿为大家展示一下按角分类的成果呢? (老师依据学生的讲解并描述板书直角三角形、锐角三角形、钝角
19、三角形) 师:按边分呢? 生:三角形按角分可以分成锐角三角形、直角三角形、钝角三角形;按边分可以分成随意三角形、等腰三角形、等边三角形。 四、师生总结收获 师:这节课,你知道了什么?懂得了什么?学会了什么? 生:三角形可以按边分类,也可以按角分类。 师:今日你学会了什么数学方法? 生:分类。 师:分类在我们的日常生活中和重要,因为运用了分类方法,我们的生活才变得井井有条,我们的生活才会更加舒心,更加精彩。 五、板书设计 三角形内角和 教学内容: 人教版义务教化课程标准试验教科书数学四年级下册第67页。 设计理念: 遵循由特别到一般的规律进行探究活动是这节课设计的主要特点之一。数学课程标准指出,
20、让学生学习有价值的数学,让学生带着问题、带着自己的思想、自己的思维进入数学课堂,对于学生的数学学习有着重要作用。因此,我尝试着将数学文本、课外预习、课堂教学三方有机整合,在质疑、解疑、释疑中绽开教学,培育学生提出问题、分析问题和解决问题的探究实力。 教材分析: 三角形的内角和是三角形的一个重要特征。本课是支配在学习三角形的概念及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。学生在驾驭学问方面:已经驾驭了三角形的分类,比较熟识平角等有关学问;实力方面:经过三年多的学习,已具备了初步的动手操作实力和主动探究实力以及合作学习的习惯。因此,教材很重视学问的探究与发觉,支配了一
21、系列的试验操作活动。教材呈现教学内容时,不但重视体现学问的形成过程,而且留意留给学生充分进行自主探究和沟通的空间,为老师敏捷组织教学供应了清楚的思路。概念的形成没有干脆给出结论,而是通过量、算、拼等活动,让学生探究、试验、发觉、探讨沟通、推理归纳出三角形的内角和是180。 学情分析: 学生已经驾驭三角形特性和分类,熟识了钝角、锐角、平角这些角的学问,大多数学生已经在课前通过不同的途径知道三角形的内角和是180度的结论,但不肯定清晰道理,所以本课的设计意图不在于了解,而在于验证,让学生在课堂上经验探讨问题的过程是本节课的重点。四年级的学生已经初步具备了动手操作的意识和实力,并形成了肯定的空间观念
22、,能够在探究问题的过程中,运用已有学问和阅历,通过沟通、比较、评价找寻解决问题的途径和策略。 学习目标: 1.通过测量、剪、拼等活动发觉、探究和发觉三角形内角和是180。 2.学会依据三角形内角和是180这一学问求三角形中一个未知数的度数。 3.在课堂活动中培育学生的视察、归纳、概括实力和初步的空间想象力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透转化数学思想。 4.使学生体验胜利的喜悦,激发学生主动学习数学的爱好。 教学重点: 探究和发觉三角形的内角和是180。 教学难点: 运用三角形的内角和解决实际问题。 教学打算: 1.老师:多媒体课件、剪好的不同类型的三角形。 2.学
23、生:量角器、剪刀、剪好的不同类型的三角形。 教学过程: 一、创设情景,引出问题 1.猜谜语。 师:同学们,你们喜爱猜谜语吗?今日老师给你们带来了一则谜语。请同学们读一下(课件出示谜语)。 师:打一几何图形。猜猜看! 学生猜谜语。 依据学生的回答,课件出示谜底。 师:真是三角形,同学们的反应真快! 2.复习三角形的内容。 其实,三角形我们并不生疏,它是一种特殊的平面图形。关于三角形,你们已经驾驭了哪些学问? 指名学生回答。 (当学生回答出三角形有3个顶点、3条边和3个角时,请这名学生到台上分别指出三角形的3个角,并标出角。) 3.引出课题。 师:同学们知道的还真不少,可见你们平常学习很用功。知道
24、吗?其实三角形的这三个角就是三角形的三个内角,而这三个角的度数和就是三角形的内角和。你们知道三角形的内角和是多少度吗?今日这节课就让我们一起走进三角形内角和,探究其中的奇妙。 (板书课题:三角形的内角和) 二、探究新知 1.探讨、沟通验证学问的方法。 师:那同学们用什么方法来探讨三角形的内角和呢?抓紧商议一下。(同桌沟通) 学生汇报:用量的方法;用拼的方法;用折的方法。. 2.操作验证。 师:同学们的点子还真多!现在请同学们拿出打算好的三角形, 选1个自己喜爱的三角形,选择自己喜爱的方法进行验证。(或说探讨)等探讨完了我们再沟通,发觉了什么,好吗?好,现在起先! 3.学生汇报。 师:假如你们已
25、经完成了,就把你的小手举起来示意老师。老师有点迫不及待了,想抓紧共享一下你们探讨的成果。谁先来说? 学生汇报,老师适时板书。 用量的方法 指名学生汇报度量的结果,老师板书。(指两名学生汇报) 老师白板演示测量方法,并计算和板书出结果。 老师:同样是测量的方法,有的同学得了180,有的不是180,为什么会出现这种状况?(指名学生说) 师:可能我们测量的时候会有误差,但是同学们选择比较精确的测量工具,运用正确的测量方法,还是可以得到精确的结果。看来这个方法不能使人很信服,有没有别的方法验证? 用拼的方法 a.学生汇报拼的方法并上台演示。 我这里也有一个钝角三角形,请两名同学上台演示。 b.请大家四
26、人小组合作,用他的方法验证其它三角形。 c.展示学生作品。 d.师课件展示。 师:我们用量、拼得到了180度,还有什么方法? 用折的方法 师:还想向同学们请同学们看一看他是怎么折的(课件演示)。 师:刚才我们用量的方法、拼的方法和折的方法探讨了锐角三角形、直角三角形和钝角三角形内角和,得出什么结论了? 老师依据学生板书:(随意)三角形的内角和是180度。 数学文化 师:除了我们这节课大家想到的方法,还有许多方法也能验证三角形的内角和是180,到初中我们还要更严密的方法证明三角形的内角和是180。其实,早在 300多年前就有一位宏大的数学家,用科学的数学方法见证了随意三角形的内角和都是180度。
27、这位宏大的数学家就是帕斯卡(课件出示帕斯卡),他是法国闻名的数学家、物理学家。他在12岁时发觉了三角形内角和定律,17时写出了圆锥截线论19岁设计了第一架计算机。 三、巩固练习 数学家发觉了学问,今日我们也能够总结出学问。你们棒不棒?真厉害,接下来白老师要考考你们。眼睛看好啦! 1.课件出示:我是小判官(对的打错的。) 强调:把两个小三角形拼在一起,问:大三角形的内角和是多少度? 老师:为什么不是360?学生回答。 2.接下来我要嘉奖你们一个嬉戏:帮角找挚友 3.求未知角的度数。 师:接下来,利用三角形的内角和我们来解决一些相关的问题吧! 课件出示第一个三角形,学生尝试独立完成,老师巡察。 老
28、师:刚才,我们利用了三角形的什么? 老师:假如一个都不知道,或只知道1个角,你能知道三角形各角的度数吗?求出下面三角形各角的度数。 a.我三边相等;b.我是等腰三角形,我的顶角是96。c.我有一个锐角是40。 老师:假如我们去求一个三角形内角的度数的时候,首先我们要去视察三角形,找出它的特点,找出它给出的已知角的度数,然后再去计算三角形未知的内角的度数。 四、拓展延长 师:看来三角形内角和的学问难不倒你们了,我们来一个挑战题。你们敢接受挑战吗?(课件出示四边形)你知道它的内角和是多少吗?指名生回答,并说出理由。同学们,你们能用今日学的学问算出它的内角和吗? 接着让学生尝试求5边形和6边形的内角
29、和。 小结:求多边形的内角和,可以从一个顶点动身,引出它的对角线,这样就把这个多边形分割成了N个三角形,它的内角和就是N个180 五、课堂总结。 师:这节课你有什么收获? 学生自由发言。 师生沟通后总结:知道了三角形的内角和是180度,依据这个规律知道可以用180减去两个内角的度数,求出第三个未知角的度数。 同学们,只要我们在日常的学习中,细心视察,大胆质疑,仔细探讨,肯定会有意想不到的收获。 六、作业布置 完成教材练习十六的第1、3题。 板书设计: ( 随意)三角形的内角和是180 1+2+3=180 度量 剪拼 折拼 相识三角形 教学内容: p.22、23、24(想想做做) 教材简析: 这
30、部分内容主要让学生相识三角形,包括了解三角形的两边之和大于第三边。第22页的例题主要帮助学生初步形成三角形的概念。第23页的例题着重让学生通过操作活动,体验和了解三角形的两边之和大于第三边。 教学难点: 相识两边之和大于第三边 教学目标: 1、使学生联系实际和利用生活阅历,通过视察、操作、测量等学习活动,相识三角形的基本特征,初步形成三角形的概念,了解三角形两边之和大于第三边。 2、使学生体会单侥幸是日常生活中常见的图形,并在学习活动中进一步产生学习图形的爱好和主动性。 教学打算: 学具盒、尺等 教学过程: 一、导入 出示例题图,问:在图上我们可以找到一种很常见的图形,是什么?(三角形) 生活
31、中的三角形随处可见,说说哪些地方也能看到? 揭示课题:相识三角形 二、做三角形 1、我们可以用不同的方法来得到一个三角形,利用手边的材料,比比谁的方法多? 沟通 (1)用小棒摆。讲评时留意:小棒摆的时候肯定要首尾相接,不能有多出来的部分。 (2)在钉子板上围。讲评时留意:只要有三个顶点,假如发觉边不够直的话,须要把三角形调整得大一些。 (3)用三角板或尺上的其他三角形干脆描画。 (4)在纸上分别画围起来的三条线段,也能得到一个三角形。 2、三角形各部分名称 一起动手画一个三角形,说说各部分的名称:3个顶点、3条边、3个角 三、三边关系 1、是不是全部的三根小棒都能围成一个三角形? 用学具盒里的
32、小棒分别摆一摆,是不是都能围成一个三角形呢? 学生摆完后沟通:(1)同一种颜色(一样长)的小棒确定是能摆成一个三角形的。 (2)一红两绿这三根小棒是不能围成一个三角形的 小结:看来并不是全部的三根小棒都能围成三角形。那为什么会围不成了呢? 2、探究不能围成三角形的缘由 (1)说说你用一红两绿三根小棒怎么就围不成三角形了呢? (两根绿的太短了,碰不到。)画一画(图略) 在图上分别标出三边为a、b、c,abc 不能围成三角形 (2)想象:假如把一根绿的换成长一点的,和原来那根绿的合起来正好和红的一样长,行不行?画一画(图略) 在图上分别标出三边为a、b、c,ab=c 不能围成三角形 (3)那原委什
33、么时候能围成三角形呢? 可能会有学生会猜想,abc 再用小棒摆一摆,摆完后再比一比,是不是符合abc? 结合画图,指出:当两条边的长度和小于第三边的时候,这两条边根本就不能遇到,所以不能围成三角形;当两条边的长度和等于第三边的时候,就变成了3条线段重合在一起的一条线段,不是三角形;只有当两边的长度和大于第三边的时候,那它们就会在第三边上面的某一处遇到,就围成了一个三角形。 3、练习巩固 (1)有这样两根小棒,分别是6厘米和8厘米,第三根小棒多长那么它们就能围成一个三角形?说说理由。你发觉了什么规律? (先可考虑最短的,假如是2厘米,那么和6厘米的合起来正好是8厘米,只能重合在一起,变成线段,所
34、以至少要比2厘米长一点,在整数范围里,那至少就得3厘米。再从最长的角度考虑,6厘米和8厘米的合起来要14厘米,不能有14厘米长,那样也是重合后变成了线段,应当要比14厘米略微短一点,即13厘米。) (发觉:比两边之差多1,比两边之和少1) (2)接着练习,如:6厘米和6厘米,3厘米和4厘米 四、完成书上的想想做做 1、在点子图上画出两个三角形 指出:画的时候,要把三角形的三个顶点和点子重合。 2、下面哪几组中的三条线段可以围成一个三角形?为什么? 在学生沟通完后追问第一种状况:那假如老师把2厘米的加上6厘米的,不就变成大于4厘米,那就可以围成三角形了。这样的推断对不对?为什么? (6厘米是其中
35、最长的一条边,它单独一条就比别的两条都长,所以,要用比较短的边合起来,然后和最长的比。) 3、从学校到少年宫有几条路途?走哪一条路最近? 请你用今日学得的学问来说明这一现象。 三角形的内角和 教学内容: 义务教化课程标准试验教科书xx版小学数学四年级下册第4246页 教学目标: 1、通过量、剪、拼、折等数学活动,让学生亲自实践操作,发觉规律,主动推导并得出三角形内角和是180的结论,会应用这一规律进行计算。 2、在操作、验证三角形内角和的过程中,体验解决问题方法的多样性,发展空间观念,提高初步的逻辑思维实力。 教学过程: 一、创设情境,导入新课 1、谈话:我们已经相识了三角形,你知道哪些关于三
36、角形的学问? 2、我们在探讨三角形学问的时候,三角形中的三个好挚友却吵了起来,想知道是怎么回事吗?我们一起去看看吧! 播放课件 具体内容说明:一个大的直角三角形说:我的个头大,我的内角和肯定比你们大。一个钝角三角形说:我有一个钝角,我的内角和才是最大的。一个小的锐角三角形很委屈的样子说:是这样吗?(它们在争辩谁的内角和大。) 你知道什么是三角形的内角和吗? 通过学生探讨,得出三角形的内角和就是三角形三个内角的度数和。 3、故事中究竟谁说得对呢?今日我们就来探讨三角形的内角和。 【设计意图】从学生的心理、爱好和意愿为动身点,利用故事的形式提出疑问,激发学生的学习爱好,提高学生探究的主动性。 二、
37、自主探究、发觉规律 1、探究三角形内角和的特点 (1)量一量 师:你认为怎样能知道三角形的内角和? 生:把三角形的三个内角分别量出来,再用加法算出三角形的内角和。 学生活动(小组合作-每组打算三种不同的三角形)量角,求和,完成第43页的表格。 学生沟通汇报测量结果。 师:从刚才的沟通中,你发觉了什么? 生:不管是锐角三角形、直角三角形还是钝角三角形,内角和都是180。 (在量的过程中,由于误差,有的学生可能算出内角和在180左右,这时老师要相机诱导:在测量的过程中出现一些误差是正常的,因为同学们画的角不够标准,量角器的不同,还有本身测量的缘由都可能导致误差。) 师:看来量一量会出现误差,那么你
38、还有其它的更科学的方法进行验证吗? (2)拼一拼 学生分小组活动,老师参加学生的活动,并赐予必要的指导。 学生展示沟通,师:从大家的沟通中,我们发觉都可以把三角形的三个内角拼成一个平角,证明三角形内角和是180 。 (3)折一折 小组活动,学生沟通 生1:将正方形(或长方形)纸沿对角线对折,这样,就折成了两个大小一样的三角形。因为正方形(或长方形)的四个直角的和是360,所以三角形的内角和就是它的一半,是180。 生2:直角三角形的两个锐角可以折成一个直角,也就是说,在直角三角形中,两个锐角的和是90,因此三角形内角和就是180。 2、归纳 师:通过刚才的活动,我们得出了什么结论? 生:三角形
39、的内角和等于180。 3、师谈话:三个三角形争辩的问题现在能解决了吗?你现在想对这三个三角形说点什么? 学生畅所欲言,对得出的规律做系统的整理。 【设计意图】动手实践,自主探究,亲身体验,是学习数学的重要方式。学生分组合作,量一量、拼一拼、折一折,通过多种感官参加比较、分析从而自主探究得出结论,得到的不仅是三角形内角和的学问,也使学生学到了怎样由已知探究未知的思维方式与方法,培育了他们主动探究的精神。 三、敏捷运用,巩固练习 师:好,大家已经发觉了三角形内角和是180这一规律,你能应用这个规律解决一些实际的问题吗? 1、推断 钝角三角形比锐角三角形的内角和大。 ( ) 锐角三角形的两个内角和小
40、于90。 ( ) 一个三角形最少有两个锐角。 ( ) 一个钝角三角形最少有一个钝角。 ( ) 学生推断并说出理由。 2、自主练习第6题 练习时,先让学生独立填空,再说说自己是怎么想的,然后用量角器验证计算的结果。 小结:以后假如遇到求一个三角形内未知角的度数时,我们可以用计算的方法算一算,简洁又精确。 3、嬉戏: 选度数,组三角形 (课件显示如下) 请选出三个角的度数来组成一个三角形 10 18 15 150 130 72 20 50 70 35 75 52 56 54 58 60 学生回答的同时,老师操作课件,把学生选择的度数拖入方框内,通过电脑计算相加是否等于180,来验证学生的选择是否正
41、确。验证学生选的对了以后,再让学生推断选择的度数所组成的三角形按角的大小分类,并说出理由。 设计意图用已学到的新知解决实际数学问题,相识学数学的价值,再次体验胜利,增加学习数学的爱好。尤其是第三个练习,依据学生的年龄特征和认知水平,设计探究性和开放性的问题,注意拓宽学生的思维活动空间。 四、课堂总结、深化相识 谈话:这节课你学会了什么?解决了什么问题?是怎样解决的? 【设计意图】不仅从学问方面进行总结,还引导学生回顾发觉问题、提出问题、解决问题的过程,关注学生学习过程中的情感体验。既让学生习得一种学习方法,又培育了学习爱好。 课后反思: 本节课学生以小组为单位进行合作学习,从自己的已有阅历动身
42、,主动地进行操作、测量、计算,并对自己的结论进行思索、分析。在充分发挥学生主体作用,放手让学生开展探究的同时,老师也恰到好处的发挥了引导作用。整个探究过程学生是自主的、有主动性的,在获得数学结论的同时学习了科学探究的方法,为今后的学习打下了坚实的基础。 三角形的特性 教学目标: 1、通过动手操作和视察比较,使学生相识三角形,知道三角形的特征及三角形高和底的含义,会在三角形内画高。 2、通过试验,使学生知道三角形的稳定性及其在生活中的应用。 3、培育学生视察、操作的实力和应用数学学问解决实际问题的实力。 4、体会数学与生活的联系,培育学生学习数学的爱好。 教学重点: 理解三角形的含义,驾驭三角形的特征、特性。 教学难点: 三角形高的确定及画法。 教具学具: 1、老师打算:多媒体课件,硬纸条制作的长方形和三角形,三角板,作业纸等。 2、学生打算:学具小棒、彩色笔、三角板,直尺等。 教学过程: 一、联系生活,情境导入 师:为了上好今日这节课,老师特意拍了一些美丽的