《matlab_图像分割算法源码(32页).doc》由会员分享,可在线阅读,更多相关《matlab_图像分割算法源码(32页).doc(32页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、-matlab_图像分割算法源码-第 32 页matlab 图像分割算法源码图像读取及灰度变换I=imread(cameraman.tif);%读取图像subplot(1,2,1),imshow(I) %输出图像title(原始图像) %在原始图像中加标题subplot(1,2,2),imhist(I) %输出原图直方图title(原始图像直方图) %在原图直方图上加标题图像旋转I = imread(cameraman.tif);figure,imshow(I);theta = 30;K = imrotate(I,theta); % Try varying the angle, theta.f
2、igure, imshow(K)边缘检测I = imread(cameraman.tif);J1=edge(I,sobel);J2=edge(I,prewitt);J3=edge(I,log);subplot(1,4,1),imshow(I);subplot(1,4,2),imshow(J1);subplot(1,4,3),imshow(J2);subplot(1,4,4),imshow(J3);1.图像反转MATLAB程序实现如下:I=imread(xian.bmp);J=double(I);J=-J+(256-1); %图像反转线性变换H=uint8(J);subplot(1,2,1),i
3、mshow(I);subplot(1,2,2),imshow(H);2.灰度线性变换MATLAB程序实现如下:I=imread(xian.bmp);subplot(2,2,1),imshow(I);title(原始图像);axis(50,250,50,200);axis on; %显示坐标系I1=rgb2gray(I);subplot(2,2,2),imshow(I1);title(灰度图像);axis(50,250,50,200);axis on; %显示坐标系J=imadjust(I1,0.1 0.5,); %局部拉伸,把0.1 0.5内的灰度拉伸为0 1subplot(2,2,3),im
4、show(J);title(线性变换图像0.1 0.5);axis(50,250,50,200);grid on; %显示网格线axis on; %显示坐标系K=imadjust(I1,0.3 0.7,); %局部拉伸,把0.3 0.7内的灰度拉伸为0 1subplot(2,2,4),imshow(K);title(线性变换图像0.3 0.7);axis(50,250,50,200);grid on; %显示网格线axis on; %显示坐标系3.非线性变换MATLAB程序实现如下:I=imread(xian.bmp);I1=rgb2gray(I);subplot(1,2,1),imshow(
5、I1);title(灰度图像);axis(50,250,50,200);grid on; %显示网格线axis on; %显示坐标系J=double(I1);J=40*(log(J+1);H=uint8(J);subplot(1,2,2),imshow(H);title(对数变换图像);axis(50,250,50,200);grid on; %显示网格线axis on; %显示坐标系4.直方图均衡化MATLAB程序实现如下:I=imread(xian.bmp);I=rgb2gray(I);figure;subplot(2,2,1);imshow(I);subplot(2,2,2);imhis
6、t(I);I1=histeq(I);figure;subplot(2,2,1);imshow(I1);subplot(2,2,2);imhist(I1);5.线性平滑滤波器用MATLAB实现领域平均法抑制噪声程序:I=imread(xian.bmp);subplot(231)imshow(I)title(原始图像)I=rgb2gray(I);I1=imnoise(I,salt & pepper,0.02);subplot(232)imshow(I1)title(添加椒盐噪声的图像)k1=filter2(fspecial(average,3),I1)/255; %进行3*3模板平滑滤波k2=fi
7、lter2(fspecial(average,5),I1)/255; %进行5*5模板平滑滤波k3=filter2(fspecial(average,7),I1)/255; %进行7*7模板平滑滤波k4=filter2(fspecial(average,9),I1)/255; %进行9*9模板平滑滤波subplot(233),imshow(k1);title(3*3模板平滑滤波);subplot(234),imshow(k2);title(5*5模板平滑滤波);subplot(235),imshow(k3);title(7*7模板平滑滤波);subplot(236),imshow(k4);ti
8、tle(9*9模板平滑滤波);6.中值滤波器用MATLAB实现中值滤波程序如下:I=imread(xian.bmp);I=rgb2gray(I);J=imnoise(I,salt&pepper,0.02);subplot(231),imshow(I);title(原图像);subplot(232),imshow(J);title(添加椒盐噪声图像);k1=medfilt2(J); %进行3*3模板中值滤波k2=medfilt2(J,5,5); %进行5*5模板中值滤波k3=medfilt2(J,7,7); %进行7*7模板中值滤波k4=medfilt2(J,9,9); %进行9*9模板中值滤波
9、subplot(233),imshow(k1);title(3*3模板中值滤波);subplot(234),imshow(k2);title(5*5模板中值滤波);subplot(235),imshow(k3);title(7*7模板中值滤波);subplot(236),imshow(k4);title(9*9模板中值滤波);7.用Sobel算子和拉普拉斯对图像锐化:I=imread(xian.bmp);subplot(2,2,1),imshow(I);title(原始图像);axis(50,250,50,200);grid on; %显示网格线axis on; %显示坐标系I1=im2bw(
10、I);subplot(2,2,2),imshow(I1);title(二值图像);axis(50,250,50,200);grid on; %显示网格线axis on; %显示坐标系H=fspecial(sobel); %选择sobel算子J=filter2(H,I1); %卷积运算subplot(2,2,3),imshow(J);title(sobel算子锐化图像);axis(50,250,50,200);grid on; %显示网格线axis on; %显示坐标系h=0 1 0,1 -4 1,0 1 0; %拉普拉斯算子J1=conv2(I1,h,same); %卷积运算subplot(2
11、,2,4),imshow(J1);title(拉普拉斯算子锐化图像);axis(50,250,50,200);grid on; %显示网格线axis on; %显示坐标系8.梯度算子检测边缘用MATLAB实现如下:I=imread(xian.bmp);subplot(2,3,1);imshow(I);title(原始图像);axis(50,250,50,200);grid on; %显示网格线axis on; %显示坐标系I1=im2bw(I);subplot(2,3,2);imshow(I1);title(二值图像);axis(50,250,50,200);grid on; %显示网格线ax
12、is on; %显示坐标系I2=edge(I1,roberts);figure;subplot(2,3,3);imshow(I2);title(roberts算子分割结果);axis(50,250,50,200);grid on; %显示网格线axis on; %显示坐标系I3=edge(I1,sobel);subplot(2,3,4);imshow(I3);title(sobel算子分割结果);axis(50,250,50,200);grid on; %显示网格线axis on; %显示坐标系I4=edge(I1,Prewitt);subplot(2,3,5);imshow(I4);titl
13、e(Prewitt算子分割结果);axis(50,250,50,200);grid on; %显示网格线axis on; %显示坐标系9.LOG算子检测边缘用MATLAB程序实现如下:I=imread(xian.bmp);subplot(2,2,1);imshow(I);title(原始图像);I1=rgb2gray(I);subplot(2,2,2);imshow(I1);title(灰度图像);I2=edge(I1,log);subplot(2,2,3);imshow(I2);title(log算子分割结果);10.Canny算子检测边缘用MATLAB程序实现如下:I=imread(xia
14、n.bmp);subplot(2,2,1);imshow(I);title(原始图像)I1=rgb2gray(I);subplot(2,2,2);imshow(I1);title(灰度图像);I2=edge(I1,canny);subplot(2,2,3);imshow(I2);title(canny算子分割结果);11.边界跟踪(bwtraceboundary函数)clcclear allI=imread(xian.bmp);figureimshow(I);title(原始图像);I1=rgb2gray(I); %将彩色图像转化灰度图像threshold=graythresh(I1); %计
15、算将灰度图像转化为二值图像所需的门限BW=im2bw(I1, threshold); %将灰度图像转化为二值图像figureimshow(BW);title(二值图像);dim=size(BW);col=round(dim(2)/2)-90; %计算起始点列坐标row=find(BW(:,col),1); %计算起始点行坐标connectivity=8;num_points=180;contour=bwtraceboundary(BW,row,col,N,connectivity,num_points);%提取边界figureimshow(I1);hold on;plot(contour(:,
16、2),contour(:,1), g,LineWidth ,2);title(边界跟踪图像);12.Hough变换I= imread(xian.bmp);rotI=rgb2gray(I);subplot(2,2,1);imshow(rotI);title(灰度图像);axis(50,250,50,200);grid on;axis on;BW=edge(rotI,prewitt);subplot(2,2,2);imshow(BW);title(prewitt算子边缘检测后图像);axis(50,250,50,200);grid on;axis on;H,T,R=hough(BW);subplo
17、t(2,2,3);imshow(H,XData,T,YData,R,InitialMagnification,fit);title(霍夫变换图);xlabel(theta),ylabel(rho);axis on , axis normal, hold on;P=houghpeaks(H,5,threshold,ceil(0.3*max(H(:);x=T(P(:,2);y=R(P(:,1);plot(x,y,s,color,white);lines=houghlines(BW,T,R,P,FillGap,5,MinLength,7);subplot(2,2,4);,imshow(rotI);t
18、itle(霍夫变换图像检测);axis(50,250,50,200);grid on;axis on;hold on;max_len=0;for k=1:length(lines)xy=lines(k).point1;lines(k).point2;plot(xy(:,1),xy(:,2),LineWidth,2,Color,green);plot(xy(1,1),xy(1,2),x,LineWidth,2,Color,yellow);plot(xy(2,1),xy(2,2),x,LineWidth,2,Color,red);len=norm(lines(k).point1-lines(k).
19、point2);if(lenmax_len)max_len=len;xy_long=xy;endendplot(xy_long(:,1),xy_long(:,2),LineWidth,2,Color,cyan);13.直方图阈值法用MATLAB实现直方图阈值法:I=imread(xian.bmp);I1=rgb2gray(I);figure;subplot(2,2,1);imshow(I1);title(灰度图像)axis(50,250,50,200);grid on; %显示网格线axis on; %显示坐标系m,n=size(I1); %测量图像尺寸参数GP=zeros(1,256); %
20、预创建存放灰度出现概率的向量for k=0:255 GP(k+1)=length(find(I1=k)/(m*n); %计算每级灰度出现的概率,将其存入GP中相应位置endsubplot(2,2,2),bar(0:255,GP,g) %绘制直方图title(灰度直方图)xlabel(灰度值)ylabel(出现概率)I2=im2bw(I,150/255);subplot(2,2,3),imshow(I2);title(阈值150的分割图像)axis(50,250,50,200);grid on; %显示网格线axis on; %显示坐标系I3=im2bw(I,200/255); %subplot
21、(2,2,4),imshow(I3);title(阈值200的分割图像)axis(50,250,50,200);grid on; %显示网格线axis on; %显示坐标系14. 自动阈值法:Otsu法用MATLAB实现Otsu算法:clcclear allI=imread(xian.bmp);subplot(1,2,1),imshow(I);title(原始图像)axis(50,250,50,200);grid on; %显示网格线axis on; %显示坐标系level=graythresh(I); %确定灰度阈值BW=im2bw(I,level);subplot(1,2,2),imsho
22、w(BW);title(Otsu法阈值分割图像)axis(50,250,50,200);grid on; %显示网格线axis on; %显示坐标系15.膨胀操作I=imread(xian.bmp); %载入图像I1=rgb2gray(I);subplot(1,2,1);imshow(I1);title(灰度图像)axis(50,250,50,200);grid on; %显示网格线axis on; %显示坐标系se=strel(disk,1); %生成圆形结构元素I2=imdilate(I1,se); %用生成的结构元素对图像进行膨胀subplot(1,2,2);imshow(I2);tit
23、le(膨胀后图像);axis(50,250,50,200);grid on; %显示网格线axis on; %显示坐标系16.腐蚀操作MATLAB实现腐蚀操作I=imread(xian.bmp); %载入图像I1=rgb2gray(I);subplot(1,2,1);imshow(I1);title(灰度图像)axis(50,250,50,200);grid on; %显示网格线axis on; %显示坐标系se=strel(disk,1); %生成圆形结构元素I2=imerode(I1,se); %用生成的结构元素对图像进行腐蚀subplot(1,2,2);imshow(I2);title(
24、腐蚀后图像);axis(50,250,50,200);grid on; %显示网格线axis on; %显示坐标系17.开启和闭合操作用MATLAB实现开启和闭合操作I=imread(xian.bmp); %载入图像subplot(2,2,1),imshow(I);title(原始图像);axis(50,250,50,200);axis on; %显示坐标系I1=rgb2gray(I);subplot(2,2,2),imshow(I1);title(灰度图像);axis(50,250,50,200);axis on; %显示坐标系se=strel(disk,1); %采用半径为1的圆作为结构元
25、素I2=imopen(I1,se); %开启操作I3=imclose(I1,se); %闭合操作subplot(2,2,3),imshow(I2);title(开启运算后图像);axis(50,250,50,200);axis on; %显示坐标系subplot(2,2,4),imshow(I3);title(闭合运算后图像);axis(50,250,50,200);axis on; %显示坐标系18.开启和闭合组合操作I=imread(xian.bmp); %载入图像subplot(3,2,1),imshow(I);title(原始图像);axis(50,250,50,200);axis o
26、n; %显示坐标系I1=rgb2gray(I);subplot(3,2,2),imshow(I1);title(灰度图像);axis(50,250,50,200);axis on; %显示坐标系se=strel(disk,1);I2=imopen(I1,se); %开启操作I3=imclose(I1,se); %闭合操作subplot(3,2,3),imshow(I2);title(开启运算后图像);axis(50,250,50,200);axis on; %显示坐标系subplot(3,2,4),imshow(I3);title(闭合运算后图像);axis(50,250,50,200);ax
27、is on; %显示坐标系se=strel(disk,1);I4=imopen(I1,se);I5=imclose(I4,se);subplot(3,2,5),imshow(I5); %开闭运算图像title(开闭运算图像);axis(50,250,50,200);axis on; %显示坐标系I6=imclose(I1,se);I7=imopen(I6,se);subplot(3,2,6),imshow(I7); %闭开运算图像title(闭开运算图像);axis(50,250,50,200);axis on; %显示坐标系19.形态学边界提取利用MATLAB实现如下:I=imread(xi
28、an.bmp); %载入图像subplot(1,3,1),imshow(I);title(原始图像);axis(50,250,50,200);grid on; %显示网格线axis on; %显示坐标系I1=im2bw(I);subplot(1,3,2),imshow(I1);title(二值化图像);axis(50,250,50,200);grid on; %显示网格线axis on; %显示坐标系I2=bwperim(I1); %获取区域的周长subplot(1,3,3),imshow(I2);title(边界周长的二值图像);axis(50,250,50,200);grid on;axi
29、s on;20.形态学骨架提取利用MATLAB实现如下:I=imread(xian.bmp);subplot(2,2,1),imshow(I);title(原始图像);axis(50,250,50,200);axis on;I1=im2bw(I);subplot(2,2,2),imshow(I1);title(二值图像);axis(50,250,50,200);axis on;I2=bwmorph(I1,skel,1);subplot(2,2,3),imshow(I2);title(1次骨架提取);axis(50,250,50,200);axis on;I3=bwmorph(I1,skel,2
30、);subplot(2,2,4),imshow(I3);title(2次骨架提取);axis(50,250,50,200);axis on;21.直接提取四个顶点坐标I = imread(xian.bmp);I = I(:,:,1);BW=im2bw(I);figureimshow(BW)x,y=getptsMatlab求二值图像的周长2013-01-21 20:00:21|分类: matlab |标签: |字号大中小订阅 方法一,使用8向链码。水平或垂直连通的长度为1,斜向连通长度为1.414(2的平方根)首先给出8向链码的编码函数function out=chaincode8(image)
31、%功能:实现8连通链码%输入: 二值图像%输出:链码的结果n=0 1;-1 1;-1 0;-1 -1;0 -1;1 -1;1 0;1 1;%设置标志flag=1;%初始输出的链码串为空cc=;%找到起始点x y=find(image=1);x=min(x);imx=image(x,:);y=find(imx=1, 1 );first=x y;dir=7;while flag=1 tt=zeros(1,8); newdir=mod(dir+7-mod(dir,2),8); for i=0:7 j=mod(newdir+i,8)+1; tt(i+1)=image(x+n(j,1),y+n(j,2)
32、; end d=find(tt=1, 1 ); dir=mod(newdir+d-1,8); %找到下一个像素点的方向码后补充在链码的后面 cc=cc,dir; x=x+n(dir+1,1);y=y+n(dir+1,2); %判别链码的结束标志 if x=first(1)&y=first(2) flag=0; endendout=cc;下面是主函数i=bwperim(imread(1.bmp),8);%求出二值图像的边界c8=chaincode8(i);%生成8向链码sum1=0;sum2=0;for k=1:length(c8) if c8(k)=0 |c8(k)=2 |c8(k)=4 |c
33、8(k)=6 sum1=sum1+1; else sum2=sum2+1; endendl=sum1+sum2*sqrt(2);方法二,利用Matlab提供的函数i=imread(1.bmp);s=regionprops(i,Perimeter);1.代码matlab函数实现图像锐化 I,map=imread(img.jpg);imshow(I,map);I=double(I);Gx,Gy=gradient(I); % 计算梯度G=sqrt(Gx.*Gx+Gy.*Gy); % 注意是矩阵点乘J1=G;figure,imshow(J1,map); % 第一种图像增强J2=I; % 第二种图像增强
34、K=find(G=7);J2(K)=G(K);figure,imshow(J2,map);J3=I; % 第三种图像增强K=find(G=7);J3(K)=255;figure,imshow(J3,map);J4=I; % 第四种图像增强K=find(G=7);J4(K)=255;figure,imshow(J4,map);J5=I; % 第五种图像增强K=find(G=7);J5(Q)=255;figure,imshow(J5,map);MATLAB示例程序001-OSTU大津法/最大类间方差Otsu最大类间方差法原理 利用阈值将原图像分成前景,背景两个图象。 当取最佳阈值时,背景应该与前景
35、差别最大,即方差最大。otsu算法找的就是这个最大方差下的阈值。最大类间方差法(otsu)的公式推导: 记t为前景与背景的分割阈值,前景点数占图像比例为w0,平均灰度为u0;背景点数占图像比例为w1,平均灰度为u1。 则图像的总平均灰度为:u=w0*u0+w1*u1。 前景和背景图象的方差:g=w0*(u0-u)*(u0-u)+w1*(u1-u)*(u1-u)=w0*w1*(u0-u1)*(u0-u1),此公式为方差公式。 循环求取最大方差即可。 MABLAB代码及详细注释:function ostuimg = imread(Lena.jpg);I_gray=rgb2gray(img);fig
36、ure,imshow(I_gray);I_double=double(I_gray); %转化为双精度,因为大多数的函数和操作都是基于double的%figure,imshow(I_double);wid,len=size(I_gray); %wid为行数,len为列数colorlevel=256; %灰度级hist=zeros(colorlevel,1); %直方图,2561的0矩阵%threshold=128; %初始阈值%计算直方图,统计灰度值的个数for i=1:wid for j=1:len m=I_gray(i,j)+1; %因为灰度为0-255所以+1 hist(m)=hist(
37、m)+1; endend%直方图归一化hist=hist/(wid*len); %miuT为总的平均灰度,histm代表像素值为m的点个数miuT=0;for m=1:colorlevel miuT=miuT+(m-1)*hist(m);endxigmaB2=0; %用于保存每次计算的方差,与下次计算的方差比较大小for mindex=1:colorlevel threshold=mindex-1; omega1=0; %前景点所占比例 omega2=0; %背景点所占比例 for m=1:threshold-1 omega1=omega1+hist(m); %计算前景比例 end omega2=1-omega1; %计算背景比例 miu1=0; %前景平均灰度比例 miu2=0; %背景平均灰度比例 %计算前景与背景平均灰度 for m=1:colorlevel if m miu1=miu1+(m-1)*hist(m); %前