分式各种题型(6页).doc

上传人:1595****071 文档编号:35383617 上传时间:2022-08-21 格式:DOC 页数:6 大小:362.50KB
返回 下载 相关 举报
分式各种题型(6页).doc_第1页
第1页 / 共6页
分式各种题型(6页).doc_第2页
第2页 / 共6页
点击查看更多>>
资源描述

《分式各种题型(6页).doc》由会员分享,可在线阅读,更多相关《分式各种题型(6页).doc(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、-(一)、分式定义及有关题型题型一:考查分式的定义【例1】下列代数式中:,是分式的有:.题型二:考查分式有意义的条件【例2】当有何值时,下列分式有意义(1)(2)(3)(4)(5)题型三:考查分式的值为0的条件【例3】当取何值时,下列分式的值为0. (1)(2)(3)题型四:考查分式的值为正、负的条件【例4】(1)当为何值时,分式为正;(2)当为何值时,分式为负;练习:1当取何值时,下列分式有意义:(1)(2)(3)2当为何值时,下列分式的值为零:(1)(2)(二)分式的基本性质及有关题型1分式的基本性质:2分式的变号法则:题型一:化分数系数、小数系数为整数系数【例1】不改变分式的值,把分子、

2、分母的系数化为整数.(1)(2)题型二:分数的系数变号【例2】不改变分式的值,把下列分式的分子、分母的首项的符号变为正号.(1)(2)(3)题型三:化简求值题【例3】已知:,求的值.【例4】已知:,求的值.【例5】若,求的值.练习:1不改变分式的值,把下列分式的分子、分母的系数化为整数.(1)(2)2已知:,求的值.3已知:,求的值.4若,求的值.5如果,试化简.(三)分式的运算1确定最简公分母的方法:最简公分母的系数,取各分母系数的最小公倍数;最简公分母的字母因式取各分母所有字母的最高次幂.2确定最大公因式的方法:最大公因式的系数取分子、分母系数的最大公约数;取分子、分母相同的字母因式的最低

3、次幂.题型一:通分(1); (2);(3); (4)题型二:约分(1);(3);(3).题型三:分式的混合运算(1);(2);(3);(4);(5);(6);(7)题型四:化简求值题(1)已知:,求分子的值;(2)已知:,求的值;(3)已知:,试求的值.题型五:求待定字母的值【例5】若,试求的值.练习(1);(2);(3);(4);(5);(6);(7).2.(1),其中满足.(2)已知,求的值.3已知:,试求、的值.4当为何整数时,代数式的值是整数,并求出这个整数值.(四)、整数指数幂与科学记数法题型一:运用整数指数幂计算【例1】计算:(1)(2)(3)(4)题型二:化简求值题【例2】已知,

4、求(1)的值;(2)求的值.题型三:科学记数法的计算【例3】计算:(1);(2).练习:1计算:(1)(2)(3)(4)2已知,求(1),(2)的值.第二讲 分式方程【知识要点】1.分式方程的概念以及解法;2.分式方程产生增根的原因3.分式方程的应用题 【主要方法】1.分式方程主要是看分母是否有外未知数; 2.解分式方程的关健是化分式方程为整式方程;方程两边同乘以最简公分母. 3.解分式方程的应用题关健是准确地找出等量关系,恰当地设末知数. (一)分式方程题型分析题型一:用常规方法解分式方程【例1】解下列分式方程(1);(2);(3);(4)提示易出错的几个问题:分子不添括号;漏乘整数项;约去

5、相同因式至使漏根;忘记验根.题型二:特殊方法解分式方程【例2】解下列方程(1); (2)提示:(1)换元法,设;(2)裂项法,.【例3】解下列方程组题型三:求待定字母的值【例4】若关于的分式方程有增根,求的值.【例5】若分式方程的解是正数,求的取值范围.提示:且,且.题型四:解含有字母系数的方程【例6】解关于的方程提示:(1)是已知数;(2).题型五:列分式方程解应用题(1);(2);(3);(4)(5)(6)(7)2解关于的方程:(1);(2).3如果解关于的方程会产生增根,求的值.4当为何值时,关于的方程的解为非负数.5已知关于的分式方程无解,试求的值.(二)分式方程的特殊解法解分式方程,主要是把分式方程转化为整式方程,通常的方法是去分母,并且要检验,但对一些特殊的分式方程,可根据其特征,采取灵活的方法求解,现举例如下:一、交叉相乘法例1解方程:二、化归法例2解方程:三、左边通分法例3:解方程:四、分子对等法例4解方程:五、观察比较法例5解方程:六、分离常数法例6解方程:七、分组通分法例7解方程:(三)分式方程求待定字母值的方法例1若分式方程无解,求的值。例2若关于的方程不会产生增根,求的值。例3若关于分式方程有增根,求的值。例4若关于的方程有增根,求的值。-第 6 页-

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 单元课程

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁