《高一数学必修2精选习题与答案.doc》由会员分享,可在线阅读,更多相关《高一数学必修2精选习题与答案.doc(10页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、如有侵权,请联系网站删除,仅供学习与交流高一数学必修2精选习题与答案【精品文档】第 10 页 (数学2必修)第一章 空间几何体一、选择题1过圆锥的高的三等分点作平行于底面的截面,它们把圆锥侧面分成的三部分的面积之比为( )A. B. C. D. 2在棱长为的正方体上,分别用过共顶点的三条棱中点的平面截该正方形,则截去个三棱锥后 ,剩下的几何体的体积是( )A. B. C. D. 3已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为和,则( )A. B. C. D. 4如果两个球的体积之比为,那么两个球的表面积之比为( )A. B. C. D. 5有一个几何体的三视图及其尺寸如下(单位),则
2、该几何体的表面积及体积为:65A. , B. ,C. , D. 以上都不正确 二、填空题1. 若圆锥的表面积是,侧面展开图的圆心角是,则圆锥的体积是_。2.一个半球的全面积为,一个圆柱与此半球等底等体积,则这个圆柱的全面积是.3球的半径扩大为原来的倍,它的体积扩大为原来的 _ 倍.4一个直径为厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高厘米则此球的半径为_厘米.5已知棱台的上下底面面积分别为,高为,则该棱台的体积为_。三、解答题1. (如图)在底半径为,母线长为的圆锥中内接一个高为的圆柱,求圆柱的表面积2如图,在四边形中,求四边形绕旋转一周所成几何体的表面积及体积.(数学2必修)
3、第二章 点、直线、平面之间的位置关系 基础训练A组一、选择题1下列四个结论:两条直线都和同一个平面平行,则这两条直线平行。两条直线没有公共点,则这两条直线平行。两条直线都和第三条直线垂直,则这两条直线平行。一条直线和一个平面内无数条直线没有公共点,则这条直线和这个平面平行。其中正确的个数为( )A B C D2下面列举的图形一定是平面图形的是( )A有一个角是直角的四边形 B有两个角是直角的四边形 C有三个角是直角的四边形 D有四个角是直角的四边形3垂直于同一条直线的两条直线一定( )A平行 B相交 C异面 D以上都有可能4如右图所示,正三棱锥(顶点在底面的射影是底面正三角形的中心)中,分别是
4、 的中点,为上任意一点,则直线与所成的角的大小是()A B C D随点的变化而变化。5互不重合的三个平面最多可以把空间分成( )个部分 A B C D6把正方形沿对角线折起,当以四点为顶点的三棱锥体积最大时,直线和平面所成的角的大小为( )A B C D 二、填空题1 已知是两条异面直线,那么与的位置关系_。2 直线与平面所成角为,则与所成角的取值范围是 _ 3棱长为的正四面体内有一点,由点向各面引垂线,垂线段长度分别为,则的值为 。4直二面角的棱上有一点,在平面内各有一条射线,与成,则 。5下列命题中:(1)、平行于同一直线的两个平面平行;(2)、平行于同一平面的两个平面平行;(3)、垂直于
5、同一直线的两直线平行;(4)、垂直于同一平面的两直线平行.其中正确的个数有_。三、解答题1已知为空间四边形的边上的点,且求证:. 2自二面角内一点分别向两个半平面引垂线,求证:它们所成的角与二两角的平面角互补。(数学2必修)第二章 点、直线、平面之间的位置关系 综合训练B组一、选择题1已知各顶点都在一个球面上的正四棱柱(其底面是正方形,且侧棱垂直于底面)高为,体积为,则这个球的表面积是( )2已知在四面体中,分别是的中点,若,则与所成的角的度数为() 3三个平面把空间分成部分时,它们的交线有()条条条条或条4在长方体,底面是边长为的正方形,高为,则点到截面的距离为( ) A B C D 5直三
6、棱柱中,各侧棱和底面的边长均为,点是上任意一点,连接,则三棱锥的体积为( )A B C D6下列说法不正确的是( )A空间中,一组对边平行且相等的四边形是一定是平行四边形;B同一平面的两条垂线一定共面;C过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内;D过一条直线有且只有一个平面与已知平面垂直.二、填空题1正方体各面所在的平面将空间分成_部分。2空间四边形中,分别是的中点,则与的位置关系是_;四边形是_形;当_时,四边形是菱形;当_时,四边形是矩形;当_时,四边形是正方形3四棱锥中,底面是边长为的正方形,其他四个侧面都是侧棱长为的等腰三角形,则二面角的平面角为_。翰林汇
7、4三棱锥则二面角的大小为_翰林汇5为边长为的正三角形所在平面外一点且,则到的距离为_。翰林汇三、解答题3如图:是平行四边形平面外一点,分别是上的点,且=,求证:平面(数学2必修)第二章 点、直线、平面之间的位置关系提高训练C组一、选择题1设是两条不同的直线,是三个不同的平面,给出下列四个命题: 若,则 若,则 若,则 若,则 其中正确命题的序号是 ( )A和B和C和D和2若长方体的三个面的对角线长分别是,则长方体体对角线长为( ) A B C D3在三棱锥中,底面,则点到平面的距离是( ) A B C D4在正方体中,若是的中点,则直线垂直于( ) A B C D5三棱锥的高为,若三个侧面两两
8、垂直,则为的( )A内心 B外心 C垂心 D重心6在四面体中,已知棱的长为,其余各棱长都为,则二面角 的余弦值为( )A B C D 7四面体中,各个侧面都是边长为的正三角形,分别是和的中点,则异面直线与所成的角等于( )A B C D二、填空题1点到平面的距离分别为和,则线段的中点到平面的距离为_2从正方体的八个顶点中任取三个点为顶点作三角形,其中直角三角形的个数为_。3一条直线和一个平面所成的角为,则此直线和平面内不经过斜足的所有直线所成的角中最大的角是_4正四棱锥(顶点在底面的射影是底面正方形的中心)的体积为,底面对角线的长为,则侧面与底面所成的二面角等于_。5在正三棱锥(顶点在底面的射
9、影是底面正三角形的中心)中,,过作与分别交于和的截面,则截面的周长的最小值是_ 三、解答题1正方体中,是的中点求证:平面平面2求证:三个两两垂直的平面的交线两两垂直。3.在三棱锥中,是边长为的正三角形,平面平面,、分别为的中点。()证明:;()求二面角-的大小;()求点到平面的距离。(数学2必修)第三章 直线与方程一、选择题1如果直线沿轴负方向平移个单位再沿轴正方向平移个单位后,又回到原来的位置,那么直线的斜率是( )AB CD2若都在直线上,则用表示为( )A B C D 3直线与两直线和分别交于两点,若线段的中点为,则直线的斜率为( ) A B C D 4中,点,的中点为,重心为,则边的长
10、为( )A B C D5下列说法的正确的是( )A经过定点的直线都可以用方程表示B经过定点的直线都可以用方程表示C不经过原点的直线都可以用方程表示D经过任意两个不同的点的直线都可以用方程表示6若动点到点和直线的距离相等,则点的轨迹方程为( )A B C D二、填空题1已知直线与关于直线对称,直线,则的斜率是_.2直线上一点的横坐标是,若该直线绕点逆时针旋转得直线,则直线的方程是 3一直线过点,并且在两坐标轴上截距之和为,这条直线方程是_4若方程表示两条直线,则的取值是 5当时,两条直线、的交点在 象限三、解答题1经过点的所有直线中距离原点最远的直线方程是什么?2求经过点的直线,且使,到它的距离
11、相等的直线方程。3已知点,点在直线上,求取得最小值时点的坐标。4求函数的最小值。空间几何体 一、选择题 1.B 从此圆锥可以看出三个圆锥,2.D 3.D 4.C 5.A 此几何体是个圆锥,二、填空题1 设圆锥的底面半径为,母线为,则,得,得,圆锥的高2. 3. 4. 5. 三、解答题1.解:圆锥的高,圆柱的底面半径,1. 解:第二章 点、直线、平面之间的位置关系 基础训练A组一、选择题 1. A 两条直线都和同一个平面平行,这两条直线三种位置关系都有可能两条直线没有公共点,则这两条直线平行或异面两条直线都和第三条直线垂直,则这两条直线三种位置关系都有可能一条直线和一个平面内无数条直线没有公共点
12、,则这条直线也可在这个平面内2. D 对于前三个,可以想象出仅有一个直角的平面四边形沿着非直角所在的对角线翻折;对角为直角的平面四边形沿着非直角所在的对角线翻折;在翻折的过程中,某个瞬间出现了有三个直角的空间四边形3.D 垂直于同一条直线的两条直线有三种位置关系4.B 连接,则垂直于平面,即,而,5.D 八卦图 可以想象为两个平面垂直相交,第三个平面与它们的交线再垂直相交6.C 当三棱锥体积最大时,平面,取的中点,则是等要直角三角形,即二、填空题1.异面或相交 就是不可能平行2. 直线与平面所成的的角为与所成角的最小值,当在内适当旋转就可以得到,即与所成角的的最大值为3. 作等积变换:而4.或
13、 不妨固定,则有两种可能5. 对于(1)、平行于同一直线的两个平面平行,反例为:把一支笔放在打开的课本之间;(2)是对的;(3)是错的;(4)是对的三、解答题1.证明:2.略第二章 点、直线、平面之间的位置关系 综合训练B组一、选择题 1.C 正四棱柱的底面积为,正四棱柱的底面的边长为,正四棱柱的底面的对角线为,正四棱柱的对角线为,而球的直径等于正四棱柱的对角线,即, 2.D 取的中点,则则与所成的角3.C 此时三个平面两两相交,且有三条平行的交线4.C 利用三棱锥的体积变换:,则5.B 6. D 一组对边平行就决定了共面;同一平面的两条垂线互相平行,因而共面; 这些直线都在同一个平面内即直线
14、的垂面;把书本的书脊垂直放在桌上就明确了二、填空题1 分上、中、下三个部分,每个部分分空间为个部分,共部分2异面直线;平行四边形;且3 4 注意在底面的射影是斜边的中点 5三、解答题 1证明:,不妨设共面于平面,设 ,即,所以三线共面2提示:反证法3略第二章 点、直线、平面之间的位置关系 提高训练C组一、选择题 1 A 若,则,而同平行同一个平面的两条直线有三种位置关系 若,则,而同垂直于同一个平面的两个平面也可以相交2C 设同一顶点的三条棱分别为,则得,则对角线长为3B 作等积变换4B 垂直于在平面上的射影5C 6C 取的中点,取的中点,7C 取的中点,则,在中,二、填空题1.或 分在平面的同侧和异侧两种情况2. 每个表面有个,共个;每个对角面有个,共个3. 垂直时最大 4. 底面边长为,高为, 5. 沿着将正三棱锥侧面展开,则共线,且三、解答题:略第三章 直线和方程 一、选择题 1.A 2.D 3.D 4.A 5.D 斜率有可能不存在,截距也有可能为6.B 点在直线上,则过点且垂直于已知直线的直线为所求二、填空题1. 2. 的倾斜角为3.,或设4. 5.二 三、解答题1. 解:过点且垂直于的直线为所求的直线,即2. 解:显然符合条件;当,在所求直线同侧时,或3. 解:设,则 当时,取得最小值,即4. 解:可看作点到点和点的距离之和,作点关于轴对称的点