《【数学】2010年版最新3年高考2年模拟分类汇编:第六章_第一节_等差数列、等比数列的概念及求和(51页).doc》由会员分享,可在线阅读,更多相关《【数学】2010年版最新3年高考2年模拟分类汇编:第六章_第一节_等差数列、等比数列的概念及求和(51页).doc(51页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、-第六章 数列第一节 等差数列、等比数列的概念及求和第一部分 三年高考体题荟萃2010年高考题一、选择题1.(2010浙江理)(3)设为等比数列的前项和,则(A)11 (B)5 (C) (D)解析:通过,设公比为,将该式转化为,解得=-2,带入所求式可知答案选D,本题主要考察了本题主要考察了等比数列的通项公式与前n项和公式,属中档题2.(2010全国卷2理)(4).如果等差数列中,那么(A)14 (B)21 (C)28 (D)35【答案】C 【命题意图】本试题主要考查等差数列的基本公式和性质.【解析】3.(2010辽宁文)(3)设为等比数列的前项和,已知,则公比(A)3 (B)4 (C)5 (
2、D)6【答案】 B解析:选B. 两式相减得, ,.4.(2010辽宁理)(6)设an是有正数组成的等比数列,为其前n项和。已知a2a4=1, ,则(A) (B) (C) (D) 【答案】B【命题立意】本题考查了等比数列的通项公式与前n项和公式,考查了同学们解决问题的能力。【解析】由a2a4=1可得,因此,又因为,联力两式有,所以q=,所以,故选B。5.(2010全国卷2文)(6)如果等差数列中,+=12,那么+=(A)14 (B) 21 (C) 28 (D) 35【答案】C【解析】本题考查了数列的基础知识。 , 6.(2010安徽文)(5)设数列的前n项和,则的值为(A) 15 (B) 16
3、(C) 49 (D)64【答案】 A【解析】.【方法技巧】直接根据即可得出结论.7.(2010浙江文)(5)设为等比数列的前n项和,则(A)-11 (B)-8(C)5(D)11解析:通过,设公比为,将该式转化为,解得=-2,带入所求式可知答案选A,本题主要考察了本题主要考察了等比数列的通项公式与前n项和公式8.(2010重庆理)(1)在等比数列中, ,则公比q的值为A. 2 B. 3 C. 4 D. 8 【答案】A解析: 9.(2010广东理)4. 已知为等比数列,Sn是它的前n项和。若, 且与2的等差中项为,则=A35 B.33 C.31 D.29【答案】C解析:设的公比为,则由等比数列的性
4、质知,即。由与2的等差中项为知,即 ,即,即10.(2010广东文)11.(2010山东理)12.(2010重庆文)(2)在等差数列中,则的值为(A)5 (B)6(C)8 (D)10【答案】 A解析:由角标性质得,所以=5二、填空题1.(2010辽宁文)(14)设为等差数列的前项和,若,则 。解析:填15. ,解得,2.(2010福建理)11在等比数列中,若公比,且前3项之和等于21,则该数列的通项公式 【答案】【解析】由题意知,解得,所以通项。【命题意图】本题考查等比数列的通项公式与前n项和公式的应用,属基础题。3.(2010江苏卷)8、函数y=x2(x0)的图像在点(ak,ak2)处的切线
5、与x轴交点的横坐标为ak+1,k为正整数,a1=16,则a1+a3+a5=_解析:考查函数的切线方程、数列的通项。在点(ak,ak2)处的切线方程为:当时,解得,所以。三、解答题1.(2010上海文)21.(本题满分14分)本题共有2个小题,第一个小题满分6分,第2个小题满分8分。已知数列的前项和为,且,(1)证明:是等比数列;(2)求数列的通项公式,并求出使得成立的最小正整数.解析:(1) 当n=1时,a1=-14;当n2时,an=Sn-Sn-1=-5an+5an-1+1,所以,又a1-1=-150,所以数列an-1是等比数列;(2) 由(1)知:,得,从而(nN*);由Sn+1Sn,得,最
6、小正整数n=152.(2010陕西文)16.(本小题满分12分)已知an是公差不为零的等差数列,a11,且a1,a3,a9成等比数列.()求数列an的通项;()求数列2an的前n项和Sn.解 ()由题设知公差d0,由a11,a1,a3,a9成等比数列得,解得d1,d0(舍去), 故an的通项an1+(n1)1n.()由()知=2n,由等比数列前n项和公式得来源:学科网ZXXKSm=2+22+23+2n=2n+1-2.3.(2010全国卷2文)(18)(本小题满分12分)已知是各项均为正数的等比数列,且,()求的通项公式;()设,求数列的前项和。【解析】本题考查了数列通项、前项和及方程与方程组的
7、基础知识。(1)设出公比根据条件列出关于与的方程求得与,可求得数列的通项公式。(2)由(1)中求得数列通项公式,可求出BN的通项公式,由其通项公式化可知其和可分成两个等比数列分别求和即可求得。4.(2010江西理)22. (本小题满分14分)证明以下命题:(1) 对任一正整a,都存在整数b,c(b0 由a2+a716.得 由得 由得将其代入得。即 (2)令两式相减得于是=-4=27. (2009福建卷文)等比数列中,已知 (I)求数列的通项公式; ()若分别为等差数列的第3项和第5项,试求数列的通项公式及前项和。解:(I)设的公比为由已知得,解得()由(I)得,则, 设的公差为,则有解得 从而
8、 所以数列的前项和28(2009重庆卷文)(本小题满分12分,()问3分,()问4分,()问5分)已知()求的值; ()设为数列的前项和,求证:;()求证:解:(),所以()由得即所以当时,于是所以 ()当时,结论成立当时,有所以 2008年高考题一、选择题1.(2008天津)若等差数列的前5项和,且,则( )A.12 B.13 C.14 D.15答案 B2.(2008陕西)已知是等差数列,则该数列前10项和等于( )A64 B100 C110 D120答案 B3.(2008广东)记等差数列的前项和为,若,则( )A16 B24 C36 D48答案 D 4.(2008浙江)已知是等比数列,则=
9、( )A.16() B.6() C.() D.()答案 C5.(2008四川)已知等比数列中,则其前3项的和的取值范围是()A. B.C. D.答案 D6.(2008福建)设an是公比为正数的等比数列,若n1=7,a5=16,则数列an前7项的和为( )A.63B.64C.127D.128答案 C二、填空题17.(2008四川)设等差数列的前项和为,若,则的最大值为_.答案 418.(2008重庆)设Sn=是等差数列an的前n项和,a12=-8,S9=-9,则S16= .答案 -72三、解答题23.(2008四川卷) 设数列的前项和为,已知()证明:当时,是等比数列;()求的通项公式解 由题意
10、知,且两式相减得即 ()当时,由知于是 又,所以是首项为1,公比为2的等比数列。()当时,由()知,即 当时,由由得因此得24.(2008江西卷)数列为等差数列,为正整数,其前项和为,数列为等比数列,且,数列是公比为64的等比数列,.(1)求;(2)求证.解:(1)设的公差为,的公比为,则为正整数,依题意有由知为正有理数,故为的因子之一,解得故(2)25.(2008湖北).已知数列和满足:,其中为实数,为正整数.()对任意实数,证明数列不是等比数列;()试判断数列是否为等比数列,并证明你的结论;()设,为数列的前项和.是否存在实数,使得对任意正整数,都有?若存在,求的取值范围;若不存在,说明理
11、由.本小题主要考查等比数列的定义、数列求和、不等式等基础知识和分类讨论的思想,考查综合分析问题的能力和推理认证能力,(满分14分)()证明:假设存在一个实数,使an是等比数列,则有a22=a1a3,即矛盾.所以an不是等比数列.()解:因为bn+1=(-1)n+1an+1-3(n-1)+21=(-1)n+1(an-2n+14)=(-1)n(an-3n+21)=-bn又b1x-(+18),所以当18,bn=0(nN+),此时bn不是等比数列:当18时,b1=(+18) 0,由上可知bn0,(nN+).故当-18时,数列bn是以(18)为首项,为公比的等比数列.()由()知,当=-18,bn=0,Sn=0,不满足题目要求.-18,故知bn= -(+18)()n-1,于是可得Sn=-要使aSnb对任意正整数n成立,即a-(+18)1()nb(nN+) 当n为正奇数时,1f(n)f(n)的最大值为f(1)=,f(n)的最小值为f(2)= ,于是,由式得a-(+18),当a3a存在实数,使得对任意正整数n,都有aSnb,则双曲线的离心率e等于( )A B C D答案B11、(2009深圳一模)在等差数列中,表示数列的前项和,则ABCD答案 B二、填空题1、(2009上海十四校联考)若数列为“等方比数列”。则“数列是等方比数列”是“数列是等方比数列”的 条件2、(2009上海八校联考)在数