《最新matlab30个案例分析案例14-SVM神经网络的回归预测分析.docx》由会员分享,可在线阅读,更多相关《最新matlab30个案例分析案例14-SVM神经网络的回归预测分析.docx(26页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-datematlab30个案例分析案例14-SVM神经网络的回归预测分析matlab30个案例分析案例14-SVM神经网络的回归预测分析% SVM神经网络的回归预测分析-上证指数开盘指数预测 % 清空环境变量function chapter14tic;close all;clear;clc;format compact;% 数据的提取和预处理% 载入测试数据上证指数(1990
2、.12.19-2009.08.19)% 数据是一个4579*6的double型的矩阵,每一行表示每一天的上证指数% 6列分别表示当天上证指数的开盘指数,指数最高值,指数最低值,收盘指数,当日交易量,当日交易额.load chapter14_sh.mat;% 提取数据m,n = size(sh);ts = sh(2:m,1);tsx = sh(1:m-1,:);% 画出原始上证指数的每日开盘数figure;plot(ts,LineWidth,2);title(上证指数的每日开盘数(1990.12.20-2009.08.19),FontSize,12);xlabel(交易日天数(1990.12.1
3、9-2009.08.19),FontSize,12);ylabel(开盘数,FontSize,12);grid on;% 数据预处理,将原始数据进行归一化ts = ts;tsx = tsx;% mapminmax为matlab自带的映射函数% 对ts进行归一化TS,TSps = mapminmax(ts,1,2);% 画出原始上证指数的每日开盘数归一化后的图像figure;plot(TS,LineWidth,2);title(原始上证指数的每日开盘数归一化后的图像,FontSize,12);xlabel(交易日天数(1990.12.19-2009.08.19),FontSize,12);yla
4、bel(归一化后的开盘数,FontSize,12);grid on;% 对TS进行转置,以符合libsvm工具箱的数据格式要求TS = TS;% mapminmax为matlab自带的映射函数% 对tsx进行归一化TSX,TSXps = mapminmax(tsx,1,2);% 对TSX进行转置,以符合libsvm工具箱的数据格式要求TSX = TSX;% 选择回归预测分析最佳的SVM参数c&g% 首先进行粗略选择: bestmse,bestc,bestg = SVMcgForRegress(TS,TSX,-8,8,-8,8);% 打印粗略选择结果disp(打印粗略选择结果);str = sp
5、rintf( Best Cross Validation MSE = %g Best c = %g Best g = %g,bestmse,bestc,bestg);disp(str);% 根据粗略选择的结果图再进行精细选择: bestmse,bestc,bestg = SVMcgForRegress(TS,TSX,-4,4,-4,4,3,0.5,0.5,0.05);% 打印精细选择结果disp(打印精细选择结果);str = sprintf( Best Cross Validation MSE = %g Best c = %g Best g = %g,bestmse,bestc,bestg)
6、;disp(str);% 利用回归预测分析最佳的参数进行SVM网络训练cmd = -c , num2str(bestc), -g , num2str(bestg) , -s 3 -p 0.01;model = svmtrain(TS,TSX,cmd);% SVM网络回归预测predict,mse = svmpredict(TS,TSX,model);predict = mapminmax(reverse,predict,TSps);predict = predict;% 打印回归结果str = sprintf( 均方误差 MSE = %g 相关系数 R = %g%,mse(2),mse(3)*
7、100);disp(str);% 结果分析figure;hold on;plot(ts,-o);plot(predict,r-);legend(原始数据,回归预测数据);hold off;title(原始数据和回归预测数据对比,FontSize,12);xlabel(交易日天数(1990.12.19-2009.08.19),FontSize,12);ylabel(开盘数,FontSize,12);grid on;figure;error = predict - ts;plot(error,rd);title(误差图(predicted data - original data),FontSiz
8、e,12);xlabel(交易日天数(1990.12.19-2009.08.19),FontSize,12);ylabel(误差量,FontSize,12);grid on;figure;error = (predict - ts)./ts;plot(error,rd);title(相对误差图(predicted data - original data)/original data,FontSize,12);xlabel(交易日天数(1990.12.19-2009.08.19),FontSize,12);ylabel(相对误差量,FontSize,12);grid on;snapnow;to
9、c;% 子函数 SVMcgForRegress.mfunction mse,bestc,bestg = SVMcgForRegress(train_label,train,cmin,cmax,gmin,gmax,v,cstep,gstep,msestep)%SVMcg cross validation by faruto% by faruto%Email:patrick.lee QQ:516667408 BNU%last modified 2010.01.17%Super Moderator % 若转载请注明:% faruto and liyang , LIBSVM-farutoUltimat
10、eVersion % a toolbox with implements for support vector machines based on libsvm, 2009. % Software available at % % Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library for% support vector machines, 2001. Software available at% http:/www.csie.ntu.edu.tw/cjlin/libsvm% about the parameters of SVMcg i
11、f nargin 10 msestep = 0.06;endif nargin 8 cstep = 0.8; gstep = 0.8;endif nargin 7 v = 5;endif nargin 5 gmax = 8; gmin = -8;endif nargin 3 cmax = 8; cmin = -8;end% X:c Y:g cg:accX,Y = meshgrid(cmin:cstep:cmax,gmin:gstep:gmax);m,n = size(X);cg = zeros(m,n);eps = 10(-4);bestc = 0;bestg = 0;mse = Inf;ba
12、senum = 2;for i = 1:m for j = 1:n cmd = -v ,num2str(v), -c ,num2str( basenumX(i,j) ), -g ,num2str( basenumY(i,j) ), -s 3 -p 0.1; cg(i,j) = svmtrain(train_label, train, cmd); if cg(i,j) mse mse = cg(i,j); bestc = basenumX(i,j); bestg = basenumY(i,j); end if abs( cg(i,j)-mse ) basenumX(i,j) mse = cg(i
13、,j); bestc = basenumX(i,j); bestg = basenumY(i,j); end endend% to draw the acc with different c & gcg,ps = mapminmax(cg,0,1);figure;C,h = contour(X,Y,cg,0:msestep:0.5);clabel(C,h,FontSize,10,Color,r);xlabel(log2c,FontSize,12);ylabel(log2g,FontSize,12);firstline = SVR参数选择结果图(等高线图)GridSearchMethod; se
14、condline = Best c=,num2str(bestc), g=,num2str(bestg), . CVmse=,num2str(mse);title(firstline;secondline,Fontsize,12);grid on;figure;meshc(X,Y,cg);% mesh(X,Y,cg);% surf(X,Y,cg);axis(cmin,cmax,gmin,gmax,0,1);xlabel(log2c,FontSize,12);ylabel(log2g,FontSize,12);zlabel(MSE,FontSize,12);firstline = SVR参数选择结果图(3D视图)GridSearchMethod; secondline = Best c=,num2str(bestc), g=,num2str(bestg), . CVmse=,num2str(mse);title(firstline;secondline,Fontsize,12);-