《三角形的内角和(提高)知识讲解(5页).doc》由会员分享,可在线阅读,更多相关《三角形的内角和(提高)知识讲解(5页).doc(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、-三角形的内角和(提高)知识讲解【学习目标】1理解三角形内角和定理的证明方法;2掌握三角形内角和定理及三角形的外角性质;3能够运用三角形内角和定理及三角形的外角性质进行相关的计算,证明问题.【要点梳理】要点一、三角形的内角和 三角形内角和定理:三角形的内角和为180要点诠释:应用三角形内角和定理可以解决以下三类问题:在三角形中已知任意两个角的度数可以求出第三个角的度数;已知三角形三个内角的关系,可以求出其内角的度数;求一个三角形中各角之间的关系要点二、三角形的外角1定义:三角形的一边与另一边的延长线组成的角叫做三角形的外角如图,ACD是ABC的一个外角.要点诠释:(1)外角的特征:顶点在三角形
2、的一个顶点上; 一条边是三角形的一边;另一条边是三角形某条边的延长线 (2)三角形每个顶点处有两个外角,它们是对顶角所以三角形共有六个外角,通常每个顶点处取一个外角,因此,我们常说三角形有三个外角2性质:(1)三角形的一个外角等于与它不相邻的两个内角的和 (2)三角形的一个外角大于任意一个与它不相邻的内角要点诠释:三角形内角和定理和三角形外角的性质是求角度及与角有关的推理论证明经常使用的理论依据另外,在证角的不等关系时也常想到外角的性质3.三角形的外角和: 三角形的外角和等于360.要点诠释:因为三角形的每个外角与它相邻的内角是邻补角,由三角形的内角和是180,可推出三角形的三个外角和是360
3、【典型例题】类型一、三角形的内角和1在ABC中,若ABC,试判断该三角形的形状【思路点拨】由ABC,以及A+B+C180,可求出A、B和C的度数,从而判断三角形的形状【答案与解析】解:设Ax,则B2x,C3x 由于A+B+C180,即有x+2x+3x180 解得x30故A30B60,C90 故ABC是直角三角形【总结升华】本题利用设未知数的方法求出三角形三个内角的度数,解法较为巧妙举一反三:【变式1】三角形中至少有一个角不小于_度【答案】60【变式2】如图,ACBC,CDAB,图中有 对互余的角?有 对相等的锐角? 【答案】3,22.在ABC中,ABCC,BD是AC边上的高,ABD30,则C的
4、度数是多少?【思路点拨】按ABC为锐角三角形和钝角三角形两种情况,分类讨论【答案与解析】 解:分两种情况讨论: (1)当ABC为锐角三角形时,如图所示,在ABD中, BD是AC边上的高(已知), ADB90(垂直定义) 又 ABD30(已知), A180-ADB-ABD180-90-3060 又 A+ABC+C180(三角形内角和定理), ABC+C120, 又 ABCC, C60(2)当ABC为钝角三角形时,如图所示在直角ABD中, ABD30(已知),所以BAD60 BAC120 又 BAC+ABC+C180(三角形内角和定理), ABC+C60 C30综上,C的度数为60或30【总结升华
5、】在解决无图的几何题的过程中,只有正确作出图形才能解决问题这就要求解答者必须具备根据条件作出图形的能力;要注意考虑图形的完整性和其他各种可能性,双解和多解问题也是我们在学习过程中应该注意的一个重要环节类型二、三角形的外角3.如图,在ABC中,AEBC于E,AD为BAC的平分线,B=50,C=70,求DAE 【答案与解析】解:A180BC180507060又AD为BAC的平分线所以BAD30ADEBBAD503080 又 AEBC于E 所以DAE90ADE908010举一反三:【变式】如图,在ABC中,ABAC,AEBC于E,AD为BAC的平分线,则DAE与CB的数量关系 .【答案】4.如图所示
6、,已知CE是ABC外角ACD的平分线,CE交BA延长线于点E.求证:BAC B.【答案与解析】证明:在ACE中,BAC 1(三角形的一个外角大于与它不相邻的任何一个内角).同理在BCE中,2 B,因为1=2,所以BAC B.【总结升华】涉及角的不等关系的问题时,经常用到三角形外角性质:“三角形的一个外角大于与它不相邻的任何一个内角”.举一反三:【变式】(2015春高密市期末)一个零件的形状如图,按规定A应等于90,B、C应分别是21和32,现测量得BDC=148,你认为这个零件合格吗?为什么?【答案】解:延长CD与AB相交于点FDFB=C+A=32+90=122,又BDC=DFB+B=122+
7、21=143,实际量得的BDC=148,143148,这个零件不合格类型三、三角形的内角外角综合5.(2015春东台市)已知,如图,在ABC中,A=ABC,直线EF分别交ABC的边AB,AC和CB的延长线于点D,E,F(1)求证:F+FEC=2A;(2)过B点作BMAC交FD于点M,试探究MBC与F+FEC的数量关系,并证明你的结论【思路点拨】(1)根据三角形外角的性质,可得出FEC=A+ADE,F+BDF=ABC,再根据A=ABC,即可得出答案;(2)由BMAC,得出MBA=A,A=ABC,得出MBC=MBA+ABC=2A,结合(1)的结论证得答案即可【答案与解析】(1)证明:FEC=A+A
8、DE,F+BDF=ABC,F+FEC=F+A+ADE,ADE=BDF,F+FEC=A+ABC,A=ABC,F+FEC=A+ABC=2A(2)MBC=F+FEC证明:BMAC,MBA=A,、A=ABC,MBC=MBA+ABC=2A,又F+FEC=2A,MBC=F+FEC【总结升华】主要考察了三角形的内角和定理,平行线的性质,外角的性质,解题的关键是利用角的和与差与等量代换解决问题举一反三:【变式1】如图所示,五角星ABCDE中,试说明A+B+C+D+E=180. 【答案】解:因为AGF是GCE的外角,所以AGF=C+E.同理AFG=B+D.在AFG中,A+AFG+AGF=180.所以A+B+C+D+E=180.【变式2】一个三角形的外角中,最多有锐角 ( )A1个 B2个 C3个 D不能确定【答案】A (提示:由于三角形最多有一个内角是钝角,故最多有一个外角是锐角)-第 5 页-