《线性代数(经管类)》综合测验题库(54页).doc

上传人:1595****071 文档编号:35304793 上传时间:2022-08-21 格式:DOC 页数:54 大小:474KB
返回 下载 相关 举报
《线性代数(经管类)》综合测验题库(54页).doc_第1页
第1页 / 共54页
《线性代数(经管类)》综合测验题库(54页).doc_第2页
第2页 / 共54页
点击查看更多>>
资源描述

《《线性代数(经管类)》综合测验题库(54页).doc》由会员分享,可在线阅读,更多相关《《线性代数(经管类)》综合测验题库(54页).doc(54页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、-线性代数(经管类)综合测验题库一、单项选择题1.下列条件不能保证n阶实对称阵A为正定的是()A.A-1正定 B.A没有负的特征值C.A的正惯性指数等于n D.A合同于单位阵2.二次型f(x1,x2,x3)= x12+ x22+x32+2x1x2+2x1x3+2x2x3,下列说法正确的是()A.是正定的 B.其矩阵可逆C.其秩为1 D.其秩为23.设f=XTAX,g=XTBX是两个n元正定二次型,则()未必是正定二次型。A.XT(A+B)X B.XTA-1XC.XTB-1X D.XTABX4.设A,B为正定阵,则() A.AB,A+B都正定 B.AB正定,A+B非正定C.AB非正定,A+B正定

2、 D.AB不一定正定,A+B正定5.二次型f=xTAx经过满秩线性变换x=Py可化为二次型yTBy,则矩阵A与B()A.一定合同 B.一定相似C.即相似又合同 D.即不相似也不合同6.实对称矩阵A的秩等于r,又它有t个正特征值,则它的符号差为()A.r B.t-rC.2t-r D.r-t7.设8.f(x1,x2,x3)= x12-2x1x2+4x32对应的矩阵是()9.设A是n阶矩阵,C是n阶正交阵,且B=CTAC,则下述结论()不成立。A.A与B相似B.A与B等价C.A与B有相同的特征值D.A与B有相同的特征向量10.下列命题错误的是()A.属于不同特征值的特征向量必线性无关B.属于同一特征

3、值的特征向量必线性相关C.相似矩阵必有相同的特征值D.特征值相同的矩阵未必相似11.下列矩阵必相似于对角矩阵的是()12.已知矩阵有一个特征值为0,则()A.x=2.5B.x=1C.x=-2.5D.x=013.已知3阶矩阵A的特征值为1,2,3,则|A-4E|=()A.2 B.-6C.6D.2414.已知f(x)=x2+x+1方阵A的特征值1,0,-1,则f(A)的特征值为()A.3,1,1B.2,-1,-2C.3,1,-1D.3,0,115.设A的特征值为1,-1,向量是属于1的特征向量,是属于-1的特征向量,则下列论断正确的是()A.和线性无关B.+是A的特征向量C.与线性相关D.与必正交

4、16.设是矩阵A对应于特征值的特征向量,P为可逆矩阵,则下列向量中()是P-1AP对应于的特征向量。A.B.PC.P-1PD.P-117.1,2都是n阶矩阵A的特征值,12,且x1与x2分别是对应于1与2的特征向量,当()时,x=k1x1+k2 x2 必是A的特征向量。A.k1=0且k2=0B.k10且k20C.k1k2=0D.k10而k2=018.矩阵的特征值为() A.1,1B.2,2C.1,2D.0,019.n元线性方程组Ax=b有两个解a、c,则a-c是()的解。 A.2Ax=b B.Ax=0 C.Ax=aD.Ax=c20.非齐次线性方程组Ax=b中,系数矩阵A和增广矩阵的秩都等于4,

5、A是46矩阵,则()。A.无法确定方程组是否有解B.方程组有无穷多解C.方程组有惟一解D.方程组无解21.对于齐次线性方程组的系数矩阵化为阶梯形时()A.只能进行行变换B.只能进行列变换C.不能进行行变换D.可以进行行和列变换22.x1、x2是AX=0的两不对应成比例的解,其中A为n阶方阵,则基础解系中向量个数为()。A.至少2个B.无基础解系C.至少1个D.n-123.齐次线性方程组有非0解,则k=()A.1B.3C.-3D.-124.设A是m行n列矩阵,r(A)=r,则下列正确的是()A.Ax=0的基础解系中的解向量个数可能为n-rB.Ax=0的基础解系中的解向量个数不可能为n-r C.A

6、x=0的基础解系中的解向量个数一定为n-r D.Ax=0的基础解系中的解向量个数为不确定25.设1,2为的解向量,1,2为对应齐次方程组的解,则()。A.1+2+21为该非齐次方程组的解B.1+1+2为该非齐次方程组的解C.1+2为该非齐次方程组的解D.1-2+1为该非齐次方程组的解26.对于齐次线性方程组而言,它的解的情况是()。A.有惟一组解B.无解C.只有零解D.无穷多解27.若1,2线性无关,是另外一个向量,则1+与2+()A.线性无关B.线性相关C.即线性相关又线性无关D.不确定28.已知向量组则向量组1,2,3,4,5的一个极大无关组为()A.1,3B.1,2C.1,2,5D.1,

7、3,529.1=(1,0,0),2=(2,1,0),3=(0,3,0),4=(2,2,2)的极大无关组是()A.1,2B.1,3C.1,2,4D.1,2,330.向量组(1,-1,0),(2,4,1),(1,5,1)的秩为()A.1B.2C.3D.431.设A是m行n列矩阵,B是m行k列矩阵,则()A.r(A,B)小于等于r(A)与r(B)之和B.r(A,B)大于r(A)与r(B)之和C.r(A,B)小于r(A)与r(B)之和D.不确定32.向量组A的任何一个部分组()由该向量组线性表示。A.都能B.一定不能C.不一定能D.不确定33.含有零向量的向量组()A.可能线性相关B.必线性相关C.可

8、能线性无关D.必线性无关34.若向量组1,2,s线性无关,1,2,s是它的加长向量组,则1,2,s的线性相关性是()A.线性无关B.线性相关C.既线性相关又线性无关D.不确定35.设1=(1,1,0),2=(0,1,1),3=(1,0,1),试判断1,2,3的相关性()A.线性无关B.线性相关C.既线性相关又线性无关D.不确定36.,是三维列向量,且|,|0,则向量组,的线性相关性是()A.线性无关B.线性相关C.既线性相关又线性无关D.不确定37.(-1,1)能否表示成(1,0)和(2,0)的线性组合?若能则表出系数为()A.能,1,1B.不能C.能, -1,1D.能, 1,-138.(4,

9、0)能否表示成(-1,2),(3,2)和(6,4)的线性组合?若能则表出系数为()A.能,系数不唯一B.不能C.能,-1,-1,1D.能,-1,1,039.设=(1,0,1),=(1,1,-1),则满足条件3x+=的x为()A.-1/3(0,1,-2)B.1/3(0,1,-2)C.(0,1,-2)D.(0,-1,2)40.设,都是n维向量,k,l是数,下列运算不成立的是()A.=B.(+)=()C.,对应分量成比例,可以说明=D.()041.若mn矩阵C中n个列向量线性无关,则C的秩()A.大于mB.大于nC.等于nD.等于m42.向量组的一个极大线性无关组可以取为()A.1B.1,2C.1,

10、2,3D.1,2,3,443.设有向量组( )44.若向量组,则该向量组()A.当a1时线性无关B.线性无关C.当a1且-2时线性无关D.线性相关45.向量组线性相关,则a的值为()A.1B.2C.4D.546.对于向量组i(i=1,2,n)因为有01+02+0n=0,则1,2,n是()向量组A.全为零向量B.线性相关C.线性无关D.任意47.设A,B是两个同阶的上三角矩阵,那么ATBT是()矩阵。 A.上三角 B.下三角C.对角形 D.既非上三角也非下三角48.如果A2-6A=E,则A-1=()。A.A-3EB.A+3EC.A+6ED.A-6E49.下列关于可逆矩阵的性质,不正确的是()。A

11、.(AT)-1=(A-1)TB.可逆矩阵可以从矩阵等式的同侧消去C.AkAl=Ak+lD.A0=150.设A=,则A*=()。51.52.设A,B,C是n阶方阵,下列各式中未必成立的是()。A.ABC=ACBB.(A+B)+C=A+(B+C)C.A(B+C)=AC+ABD.(A+B)C=AC+BC53.54.55.A.2x=7B.y=xC.y=x+1D.y=x-156.设A、B是同阶对称矩阵,则AB是()A.对称矩阵B.非对称矩阵C.反对称矩阵D.不一定是对称矩阵57.设A为3阶矩阵,且已知,则A必有一个特征值为()58.设3阶矩阵A与B相似,且已知A的特征值为2,2,3. 则()59.下列矩

12、阵中不是二次型的矩阵的是()60.已知A是一个三阶实对称正定的矩阵,那么A的特征值可能是()61.A为三阶矩阵,为它的三个特征值.其对应的特征向量为.设,则下列等式错误的是()62.n元实二次型正定的充分必要条件是()A.该二次型的秩n B.该二次型的负惯性指数nC.该二次型的正惯性指数它的秩 D.该二次型的正惯性指数n63.已知相似,则有()64.设()A.线性无关 B.线性相关 C.对应分量成比例 D.可能有零向量65.二次型的矩阵为()66.二次型的矩阵为() 67.设矩阵相似.则下列结论错误的是()68.的一个特征值.则下列结论错误的是()69.若线性方程组有解,则常数应满足()70.

13、若方程组有解,则常数k为()71.设,则齐次方程组的基础解系中含有解向量的个数为()A.1 B.2C.3 D.472.非齐次方程组有解的充分必要条件是()73.a,b为何值时,上述非齐次线性方程组无解()A.a1时,r(A)= 2,r(A,b)3 B.a=1时,r(A)= 2,r(A,b)3C.a1,r(A)=r(A,b)=4 D.a=1,r(A)=r(A,b)=474.a,b为何值时,上述非齐次线性方程组有唯一解()A.a1,r(A)=r(A,b)=4 B.a1,r(A)=r(A,b)=3 C.a=1时,r(A)= 2,r(A,b)3 D.a=1时,r(A)= 2,r(A,b)=375.下列

14、关于线性方程组的说法不正确的是()A.齐次方程组Ax=0有非零解的充分必要条件是r(A)大于未知数的个数nB.非齐次线性方程组Ax=b有解系数矩阵与增广矩阵有相等的秩C.如果r(A b)=r(A)=n(n为未知数的个数),则方程组Ax=b有惟一的解D.如果r(A b)=r(A)=n(n小于未知数的个数),则方程组Ax=b有无穷多解76.下列说法不正确的是()77.设下列说法正确的是()78.下列说法不正确的是()79.设3元线性方程组Ax=b,A的秩为2,为方程组的解,则对任意常数k,方程组Ax=b的通解为()80.设A为mn矩阵,方程Ax=0仅有零解的充分必要条件是()A.A的行向量组线性无

15、关 B.A的行向量组线性相关C.A的列向量组线性无关 D.A的列向量组线性相关81.如果方程组有非零解,则k=()A.-2 B.-1C.1 D.282.已知是非齐次线性方程组的两个不同的解,是其导出组Ax=0的一个基础解系,C1,C2为任意常数,则方程组Ax=b的通解可以表为()83.若是线性方程组的解,是方程组的解,则()是的解.84.设的基础解系,则下列正确的是()85.若齐次方程组有非零解,则下列正确的是()86.下列说法不正确的是()A.一个向量线性相关的充分必要条件是=0B.两个向量线性相关的充分必要条件是分量成比例C.n个n维向量线性相关的充分必要条件是相应的行列式为0D.当向量个

16、数小于维数时,向量组必线性相关87.向量组的秩的充分必要条件是()A.全是非零向量B.中任意两个向量都不成比例C.中任何一个向量都不能由其它向量线性表出D.中任意个向量都线性无关88.维向量组线性相关的()A.充分条件 B.必要条件 C.充要条件 D.即不必要也不充分条件89.的秩为()90.设向量组线性相关,则必可推出()A.中至少有一个向量为零向量B.中至少有两个向量成比例C.中至少有一个向量可以表示为其余向量的线性组合D.中每一个向量都可以表示为其余向量的线性组合91.已知向量组的一组基,则向量在这组基下的坐标是()A.(2,3,1) B.(3,2,1) C.(1,2,3) D.(1,3

17、,2)92.设可由向量线性表示,则下列向量中只能是( )A.(2,1,1) B.(-3,0,2) C.(1,1,0) D.(0,-1,0)93.向量组线性无关的充分必要条件是()A.均不为零向量B.中任意两个向量不成比例C.中任意s-1个向量线性无关D.中任意一个向量均不能由其余s-1个向量线性表示94.设A是三阶方阵且A=2,则的值为() 95.设()A.-4 B.-2C.2 D.496.设A为n阶方阵, n2,则-5A=()A.(-5)nA B.-5AC.5A D.5nA97.设A是45矩阵,秩(A)=3,则()A.A中的4阶子式都不为0 B.A中存在不为0的4阶子式C.A中的3阶子式都不

18、为0 D.A中存在不为0的3阶子式98.设3阶方阵A的秩为2,则与A等价的矩阵为()99.下列命题正确的是()A.两个零矩阵必相等 B.两个单位矩阵必相等C.(A+E)(A-E)=A2-E2 D.若A0,AB=AC则必有B=C.100.设矩阵,则()A.a=3,b=-1,c=1,d=3 B.a=-1,b=3,c=1,d=3C.a=3,b=-1,c=0,d=3 D.a=-1,b=3,c=0,d=3101.设A为2阶可逆矩阵,且已知,则A= ()102.设矩阵()103.设A为反对称矩阵,下列说法正确的是()104.下列结论正确的是()105.都是n阶非零矩阵,其中为A的伴随矩阵.则下列等式错误的

19、是()106.设是n阶可逆阵,O为n阶零矩阵,的逆矩阵为() 107.设有意义,则C是()矩阵.108.设,则下列各式中恒正确的是().109.设阶零矩阵.则下列各式中正确的是()110.设某3阶行列式A的第二行元素分别为-1,2,3,对应的余子式分别为-3,-2,1,则此行列式A的值为().A.3 B.15C.-10 D.8111.设多项式则f(x)的常数项为()A.4 B.1 C.-1 D.-4112.行列式中第三行第二列元素的代数余子式的值为()A.3 B.-2C.0 D.1113.设行列式则D1的值为()A.-15 B.-6 C.6D.15114.设A为三阶方阵且()A.-108 B.

20、-12C.12D.108115.设A是n阶方阵,为实数,下列各式成立的是().116.设A为3阶方阵,且已知()117.下列等式成立的是(),其中为常数.118.设()A.k-1 B.kC.1D.k+1119.设()A.18 B.-18 C.-6 D.6120.设行列式()A.-3 B.-1C.1 D.3121.设都是三阶方阵,且,则下式()必成立.122.下面结论正确的是()A.含有零元素的矩阵是零矩阵 B.零矩阵都是方阵 C.所有元素都是0的矩阵是零矩阵 D.123.行列式()124.已知() 125.如果() 126.计算四阶行列式 =()。A.(x+3a)(x-a)3B.(x+3a)(

21、x-a)2C.(x+3a)2(x-a)2D.(x+3a)3(x-a)127.行列式D如果按照第n列展开是()。A.a1nA1n+a2nA2n+.+annAnnB.a11A11+a21A21+.+an1An1C.a11A11+a12A21+.+a1nAn1D.a11A11+a21A12+.+an1A1n128.关于n个方程的n元齐次线性方程组的克拉默法则,说法正确的是()。A.如果行列式不等于0,则方程组必有无穷多解B.如果行列式不等于0,则方程组只有零解C.如果行列式等于0,则方程组必有惟一解D.如果行列式等于0,则方程组必有零解129.计算=()。A.18B.15C.12D.24130.()

22、时,方程组只有零解。A.1B.2C.3D.4131.设=( )。 A.-9m B.9mC.m D.3m132.设 =( )。133.已知三阶行列式D中的第二列元素依次为1,2,3,它们的余子式分别为-1,1,2,D的值为( )A.-3 B.-7C.3 D.7134.行列式中元素g的代数余子式的值为( )。A.bcf-bde B.bde-bcfC.acf-ade D.ade-acf135.下列行列式的值为( )。 136.n阶行列式( )等于-1。137.当a=()时,行列式的值为零。A.0B.1C.-2C.2138.行列式的值等于( )。A.abcdB.dC.6D.0139.行列式的充要条件是

23、( )A.a2 B.a0C.a2或a0 D.a2且a0140. 计算:综合测验题库答案与解析一、单项选择题1. 正确答案:B答案解析:A-1正定表明存在可逆矩阵C使CTA-1C=In,两边求逆得到C-1A(CT) -1= C-1A(C -1)T=In即A合同于In,A正定,因此不应选A。C是A正定的定义,也不是正确的选择。D表明A的正惯性指数等于n,故A是正定阵,于是只能B。事实上,一个矩阵没有负的特征值,但可能有零特征值,而正定阵的特征值必须全是正数。2. 正确答案:C答案解析:二次型的矩阵所以r(A)=1,故选项C正确,选项A,B,D都不正确。3. 正确答案:D答案解析:因为f是正定二次型

24、,A是n阶正定阵,所以A的n个特征值1,2,n都大于零,|A|0,设APj=jPj,则A-1Pj= Pj,A-1的n个特征值,j=1,2,n,必都大于零,这说明A-1为正定阵,XTA-1X为正定二定型,同理,XTB-1X为正定二次型,对任意n维非零列向量X都有XT(A+B)X=XTAX+XTBX0。 这说明XT(A+B)X为正定二次型,由于两个同阶对称阵的乘积未必为对称阵,所以XTABX未必为正定二次型。4. 正确答案:D答案解析:A、B正定对任何元素不全为零的向量X永远有XTAX0;同时XTBX0。因此A+B正定,AB不一定正定,甚至AB可能不是对称阵。5. 正确答案:A答案解析:f=xTA

25、x=(Py) TA(Py)= y T (PTAP) y= y TBy,即B=PTAP,所以矩阵A与B一定合同。只有当P是正交矩阵时,由于PT=P-1,所以A与B即相似又合同。6. 正确答案:C答案解析:A的正惯性指数为t,负惯性指数为r-t,因此符号差等于2t-r。7. 正确答案:C答案解析:主对角线元素对应x1,x2,x3平方项系数:1,1,1。a13和a31系数的和对应x1x3的系数28. 正确答案:C答案解析:x1,x2,x3平方项系数对应主对角线元素:1,0,4。x1x2系数-2,对应a12和a21系数的和,a12=-1,a21=-1。9. 正确答案:D答案解析:C是正交阵,所以CT=

26、C-1,B= C-1AC,因此A与B相似,A对。C是正交阵|C|不等于0,CTAC相当对A实行若干次初等行变换和初等列变换,A与B等价,B对。两个相似矩阵A、B有相同的特征值,C对。(E-A)X=0, (E-B)X=0是两个不同的齐次线性方程组,非零解是特征向量,一般情况这两个方程的非零解常常不同,所以只有D不对,选D。10. 正确答案:B答案解析:属于同一特征值的特征向量未必线性相关,比如单位阵的特征值全是1,但它有n个线性无关的特征向量,因此应选择B。11. 正确答案:C答案解析:C是对称阵,必相似于对角阵,故选C。12. 正确答案:A答案解析:|A|=5-2x,A有零特征值,得|A|=0

27、,故x=2.5,显然应选A。13. 正确答案:B答案解析:3阶矩阵A的特征值为1,2,3|E - A | 展开式含有三个因子乘积:(-1)(-2)(-3)|E -A | 展开式3项系数为1|E - A |=(-1)(-2)(-3)A为3阶矩阵| A-E |=(-1)3|E - A |=(-1)3 (-1)(-2)(-3)将4代入上式得到-6。14. 正确答案:A答案解析:设A的特征值是,则f(A)的特征值就是f(),把1,0,-1依次代入,得到3,1,1。15. 正确答案:A答案解析:属于不同特征值的特征向量必线性无关,因此选择A。16. 正确答案:D答案解析:设P-1AP=B A=PBP-1

28、又A=0 PBP-1=0B(P-1)= 0(P-1)17. 正确答案:D答案解析:A的特征向量不能是零向量,所以k1、k2不同时为零,所以A、C不对;x1、x2是两个不同的方程组的解,两个方程的两个非零向量解之和不再是其中一个方程的解,所以A的特征向量不选B。选D是因为k2=0,k10,x= k1 x1仍然是A的特征向量。18. 正确答案:A答案解析:得到特征值是1,1。19. 正确答案:B答案解析:A(a-c)=Aa-Ac=0,所以a-c是Ax=0的解。20. 正确答案:B答案解析:由于方程组的系数矩阵和增广矩阵的秩相同,方程组必有解,因为方程组的未知数个数是6,而系数矩阵的秩为4,因此方程

29、组有无穷多解,选B.21. 正确答案:A答案解析:齐次线性方程组的系数矩阵化为阶梯形时只能进行行变换22. 正确答案:A答案解析:x1、x2不对应成比例,所以这两个解是线性无关的,从而基础解系中向量个数至少是2.23. 正确答案:B答案解析:k=3时,|A|=0有非0解24. 正确答案:C答案解析:教材P112定理4.1.125. 正确答案:B答案解析:本题考查线性方程组的解的性质,依题意知,(1+2+21)(2,0),(1+1+2)(1,0),(1+2)(2,0),(1-2+1)(0,0),因此选B。26. 正确答案:C答案解析:这是一个齐次线性方程组,只需求出系数矩阵的秩就可以判断解的情况

30、。系数矩阵A=,第一列乘以-2加到第二列,第一列乘以-3加到第三列,得,第二列乘以3加到第三列上,得,因此r(A)=3,系数矩阵的秩等于未知数个数,因此方程组只有零解,选C。27. 正确答案:D答案解析:例如,1=(1,1), 2=(0,2),=(-1,-1)则1,2线性无关,而1+=(0,0),2+=(-1,1)线性相关。如果=(0,0),那么1+,2+还是线性无关的.28. 正确答案:D答案解析:29. 正确答案:C答案解析:本题考查极大无关组的定义,极大无关组必线性无关,但在原来那一组向量中任意取出一个向量加进去,就一定线性相关,由计算知1,2,4线性无关,但1,2,3,4线性相关,所以

31、选C。30. 正确答案:B答案解析:把向量组拼成矩阵并用初等变换求秩:求出秩等于2.31. 正确答案:A答案解析:教材P100的推论32. 正确答案:A答案解析:向量组的任何一个部分组都能由该向量组线性表示.33. 正确答案:B答案解析:含有零向量的向量组必线性相关。34. 正确答案:A答案解析:根据线性无关组的加长向量组也无关.35. 正确答案:A答案解析:系数行列式等于2,判断出是线性无关的,所以选A36.正确答案:A答案解析:首先排除C,因为向量不可能线性相关又线性无关,只能是相关或者无关.再根据教材91页两个重要结论得出本题答案为A37. 正确答案:B答案解析:假定(-1,1)=1(1

32、,0)+2(2,0),可以知道解不出1和238. 正确答案:A答案解析:假定(4,0)=1(-1,2)+2(3,2)+3(6,4)=(-1,21)+(32,22)+(63,43)=(-1+32+63,21+22+43)可得方程组:因此,第一个向量是其余向量的线性组合,而且表示不唯一,它的表示式可为:(4,0)=-(-1,2)-(3,2)+(6,4)或(4,0)=-(-1,2)+(3,2)+0(6,4)39. 正确答案:B答案解析:因为3x+=,所以.40. 正确答案:C答案解析: 应该是,对应分量都相等,可以说明=。41. 正确答案:C答案解析:C的秩等于C的列向量组的秩,也等于C的行向量组的

33、秩,而C的列向量组的秩为n,故选C。42. 正确答案:C答案解析:可以把1,2,3,4组成一个矩阵,化简为阶梯形后,可见向量组的秩为3,1,2,3可构成一个极大线性无关组,故选C。43. 正确答案:B答案解析:不妨将每个向量看成是列向量,设A=(1, s)B=(1, t),则分块阵(A,B)的秩就是r3,因为r(A,B)r(A)+ r(B),故r3 r1+ r2,即r3- r1r2,应该选择B。44. 正确答案:C答案解析:45. 正确答案:A答案解析:46. 正确答案:D答案解析:A和C显然不对,在向量线性相关的定义中,要求是不全为零的数,而现在所有的数全为零,任意一个向量组中的向量每个乘以

34、零再求和永远等于零向量,因此无法判断这组向量是否线性相关,故应选。47. 正确答案:B答案解析:AT、BT均为下三角矩阵,因此ATBT也是下三角矩阵48. 正确答案:D答案解析:A(A-6E)=E,因此A-1=A-6E49. 正确答案:D答案解析:参见教材50-51页,A0=En。50. 正确答案:B答案解析:二阶矩阵的伴随矩阵就是原矩阵的主对角元素互换,副对角元素换号。51. 正确答案:D答案解析:52. 正确答案:A答案解析:矩阵的乘法一般不满足交换律。53. 正确答案:D答案解析:54. 正确答案:B答案解析:A是22矩阵,而C和D分别是23阵,不可能和A等价。A中矩阵是非异阵,而A是奇

35、异阵,也不可能等价。B中矩阵和A 同阶,秩都等于1,必等价。55. 正确答案:C答案解析:56. 正确答案:D答案解析:因为A,B为对称矩阵,即AT=A,BT=B。又(AB)T=BTAT=BA,若A与B乘积可交换,即AB=BA,则(AB)T=BA=AB,即AB为对称矩阵。所以AB与BA不一定相等,所以AB不一定是对称矩阵。57. 正确答案:B答案解析:58. 正确答案:A答案解析:59. 正确答案:C答案解析:60. 正确答案:D答案解析:因为实对称矩阵的特征值都是实数,故A,C都不正确;又因为正定矩阵的特征值均为正数,故B也不正确;应用排除法,知答案为 D.61. 正确答案:C答案解析:62

36、. 正确答案:D答案解析:二次型正定的充分必要条件是二次型的正惯性指数n63. 正确答案:D答案解析:64. 正确答案:A答案解析:A属于不同特征值的特征向量线性无关.65. 正确答案:C答案解析:66. 正确答案:D答案解析:二次型的矩阵的定义67. 正确答案:B答案解析:根据相似矩阵的性质判断B错误.68. 正确答案:A答案解析:根据特征值,特征向量的定义和性质判断A错误.69. 正确答案:D答案解析:70. 正确答案:A答案解析:71. 正确答案:B答案解析:向量72. 正确答案:A答案解析:非齐次线性方程组有解的充分必要条件r(A)=r(A,b)73. 正确答案:B答案解析:74. 正

37、确答案:A答案解析:75. 正确答案:A答案解析:请参看教材P11276. 正确答案:B答案解析:根据P112基础解系的定义知道基础解系一定是线性无关的,所以B错误.77.正确答案:B答案解析: 78. 正确答案:C答案解析:设是Ax=b的一个解,是它的导出组Ax=0的解,则+是Ax=b的解. 所以C错误.根据解的性质其它选项都正确.79. 正确答案:D答案解析:80. 正确答案:C答案解析:设为齐次方程组的系数矩阵的列向量组,则齐次方程组可写成,因此齐次方程组AX=0仅有零解的充分必要条件就是向量组线性无关. Ax=0仅有零解的充分必要条件是r(A)=未知数的个数(即矩阵A的列数).81.

38、正确答案:B答案解析:即 12(k+1)=0,所以k=-1.(验证!)82. 正确答案:A答案解析:83. 正确答案:A答案解析:考查齐次方程组和非齐次线性方程组解的性质84. 正确答案:B答案解析:85. 正确答案:D答案解析:齐次方程组有非零解的充分必要条件是r(A) n得出选项D正确。86. 正确答案:D答案解析:应该是当向量个数大于维数时,向量组必线性相关.87. 正确答案:C答案解析:秩为s可以知道该向量组是线性无关的,又因为向量组线性相关的充分必要条件是其中存在一个向量能由其余向量线性表示.故答案为C.88. 正确答案:A答案解析:向量组的线性相关性的判别89. 正确答案:D答案解

39、析:向量组的秩的概念90. 正确答案:C答案解析:91. 正确答案:B答案解析:92. 正确答案:B答案解析:因为可由向量线性表示,则的第二个分量必为0,故只可能为B.93. 正确答案:D答案解析:向量组1=(1,0),2=(2,0)虽都不为零向量,但线性相关.向量组1=(1,0),2=(0,1),3=(1,1)中任意两个向量不成比例,但线性相关.且此向量组中任意两个向量都线性无关,故A,B,C都不对.因为向量组线性相关的充分必要条件是其中存在一个向量能由其余向量线性表示.故答案为D.94. 正确答案:A答案解析:95. 正确答案:B答案解析:96. 正确答案:A答案解析:矩阵运算的定义;行列

40、式的性质,特别是A=nA.97. 正确答案:D答案解析:矩阵秩的概念,请参看教材P70.98. 正确答案:B答案解析:矩阵等价的概念;等价矩阵有相等的秩;反之同型的两个矩阵只要其秩相等,必等价.因为A,C,D的矩阵的秩都为1,B的矩阵的秩等于2.故答案应为B.99. 正确答案:C答案解析:A和B选项中零矩阵和单位矩阵不一定同阶,所以不一定相等.D选项由于矩阵乘法不满足消去律.100. 正确答案:C答案解析:101. 正确答案:D答案解析:102. 正确答案:B答案解析:103. 正确答案:B答案解析:矩阵运算的性质:反对称阵的概念104. 正确答案:C答案解析:105. 正确答案:C答案解析:106. 正确答案:A答案解析:107. 正确答案:D答案解析:108. 正确答案:C答案解析:109. 正确答案:A答案解析:矩阵乘法性质与数的乘法性质的异同110. 正确答案:C答案解析:111. 正确答案:A答案解析:f(x)=(-1)A12+xA13,故常数项为.112. 正确答案:B答案解析:113. 正确答案:C答案解析:114. 正确答案:D答案解析:115. 正确答案:C答案解析:这是行列式的性质.116. 正确答案:B答案解析:117. 正确答案:D答案解析:由行列式的性质可以判断D正确.118. 正确答案:B答案解析:将所求行列的第二行的-1倍加到第一行,这

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 单元课程

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁