《运筹学线性规划实验报告.doc》由会员分享,可在线阅读,更多相关《运筹学线性规划实验报告.doc(30页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、管理运筹学实验报告实验日期: 2016年 04月 21日 2016 年 05 月 18 日班级2014级04班姓名杨艺玲学号2014190456实验名称管理运筹学问题的计算机求解实验目的:通过实验学生应该熟练掌握“管理运筹学3.0”软件的使用,并能利用“管理运筹学3.0”对具体问题进行问题处理,且能对软件处理结果进行解释和说明。实验所用软件及版本:管理运筹学3.0实验过程:(含基本步骤及异常情况记录等)一、 实验步骤(以P31页 习题1 为例)1.打开软件“管理运筹学3.0”2.在主菜单中选择线性规划模型,屏幕中会出现线性规划页面3.在点击“新建”按钮以后,按软件的要求输入目标函数个数和约束条
2、件个数,输入目标函数级约束条件的歌变量的系数和b值,并选择好“” 、“”或“”,如图二所示,最后点击解决4.注意事项:(1) 输入的系数可以是整数、小数,但不能是分数,要把分数化为小数再输入。(2) 输入前要合并同类项。当约束条件输入完毕后,请点击“解决”按钮,屏幕上讲显现线性规划问题的结果,如图所示5.输出结果如下5. 课后习题:一、P31习题1 某家具公司生产甲、乙两种型号的组合柜,每种组合柜需要两种工艺(制白坯和油漆).甲型号组合柜需要制白坯6工时,油漆8工时:乙型号组合柜需要制白坯12工时,油漆4工时.已知制白坯工艺的生产能力为120工时/天,油漆工艺的生产能力为64工时/天,甲型号组
3、合柜单位利润200元,乙型号组合柜单位利润为240元.约束条件:问题:(1) 甲、乙两种柜的日产量是多少?这时最大利润是多少?答:由实验过程中的输出结果得甲组合柜的日产量是4个,乙的事8个。(2) 图中的对偶价格13.333的含义是什么?答: 对偶价格13.333的含义是约束条件2中,每增加一个工时的油漆工作,利润会增加13.33元。(3) 对图中的常数项范围的上、下限的含义给予具体说明,并阐述如何使用这些信息。答:当约束条件1的常数项在48192范围内变化,且其他约束条件不变时,约束条件1的对偶价格不变,仍为15.56;当约束条件2的常数项在40180范围内变化,而其他约束条件的常数项不变时
4、,约束条件2的对偶价格不然,仍为13.333。(4) 若甲组合柜的利润变为300,最优解不变?为什么?答:目标函数的最优值会变,因为甲组合柜的利润增加,所以总利润和对偶价格增加;甲、乙的工艺耗时不变,所以甲、乙的生产安排不变。二、 学号题约束条件:学号尾数:56 则:约束条件:实验过程如下:1. 输入目标函数及约束条件:2.标准化结果:3.运算过程实验结果报告与实验总结:4. 输出结果输出结果分析:1. 目标函数最优值是-114.5,x1=0,x2+0.61,x3=-14.28,x4=14.22, 变量x1的相差值为2.5的含义为如果目标函数中x1 的系数能够增加2.5,则x1 的值能够大于零
5、。2. 松弛变量为零,则表示与之相对应的资源已经全部用上;对偶价格:对应资源每增加一个单位,将增加多少个单位的最优值。3. 目标函数范围:最优解不变时,目标函数的决策变量的可变化范围,即生产安排可以在此范围内改变,而最优解不会改变。4. 常数项范围:目标函数右端的常数项的变化范围,常数项在此范围内的改变,不会影响对偶价格。三、 P59页 习题1某快餐店坐落在一个旅游景点中,这个旅游景点远离市区 ,平时游客不多而在每个星期六游客猛增,快餐店主要为游客提供低价位的快餐服务。该快餐雇佣了两名正式职工,正式职工每天工作8h。其余工作由临时工来担任,临时工每班工作4h,在星期六每个营业小时所需职工数(包
6、括正式工和临时工),如表所示已知一名正式工从11点开始上班,工作4h后,休息1h而后在工作4h;另一名正式职工13点开始上班,工作4h后,休息1h,而后在工作4h。又知临时工每小时的工资为4元。时间所需职工数时间所需职工数11:0012:00917:0018:00612:0013:00918:0019:001213:0014:00919:0020:001214:0015:00320:0021:00715:0016:00321:0022:00716:0017:003解:由题,列出方程如下:答:由输出结果可得:最优解为352元,具体排班情况为:11点到12点的时段安排8个临时工;13点到14点的时
7、段再安排1个临时工;14点到15点的时段安排1个临时工;16点到17点时段安排5个临时工;18点到19点安排7个临时工。四、P60页 习题2前进电器厂生产A、B、C三种产品,有关资料如下产品材料消耗/(kg/件)台时消耗/(台时/件)产品利润/(元/件)市场容量/件A1.0210200B1.51.212250C4.0114100资源限制2000kg1000台时(1) 在资源限量及市场容量允许的条件下,如何安排生产使得获利最多?解:由题可得五、P161页 习题2某集团在全市拥有四家分公司,员工数分别是300分、300人、200人、200人。本着人性化管理的理念,考虑为员工定制牛奶,现在准备通过三
8、家牛奶供应商为个分工公司配送牛奶,三家分公司可提供的配送量分别是500个、200个、400个。由于距离原因,相应的单位运价表如下表所示,请问该如何定制牛奶? 供应商 分公司分公司1分公司2分公司3分公司4供应商10.30.70.60.4供应商20.20.40.30.2供应商30.40.30.80.5解:由题可列出满足供应商的约束条件:满足各分公司的约束条件:最后,输出结果如下由输出结果可得:供应商1给分公司1和分公司4分别运输300个、200个,供应商2给分公司3送200个,供应商3给分公司送300个可使得运费最少。六、P161页 习题3山东省3个主要苹果产地将苹果销往3个地区,其产销平衡表和
9、单位运价表如下,试用最小元素法求得初始解,使得总运费最少,并判断该初始解是否为最优解,并求出最优解。 产地 销地123产量15281102342140335750销量90100110解:由题可得满足产地的约束条件:满足销地的约束条件:由输出结果可得:产地1给销地1运送10、给销地2运送100,产地2给销地1运送30、给销地运送110,产地3给销地1运送50可使得总运费最少。七、P161页 习题4某公司在三个地方有三个分厂,生产同一种产品,其产量分别为300箱、400箱、500箱,需要供应四个地方的销售,这四地的产品需求分别为400箱、250箱、350箱、200箱。三个厂到四个销地的单位运价表如
10、下所示。产地 销地甲乙丙丁1分厂211723252分厂101530193分厂23212022(1) 应该如何安排运输方案,使得总运费最小?(2) 如果2分厂的产量从400箱提高到600箱,那么该如何安排运输方案,使得总运费最小?(3) 如果销地甲的需求从400箱提高到500箱,而其他情况都同(1),那该如何安排运输方案,使得总运费最小。解:(1)由题可得 满足产地的约束条件: 满足销地的约束条件 :(2)由题满足产地的约束条件: 满足销地的约束条件(3)由题满足产地的约束条件: 满足销地的约束条件:八、P161页 习题5某建材加工企业2013年年底接到170万单位的订单,期限一年。该企业在本市
11、拥有四个加工点、三个仓库,建材在加工点完成后会放入仓库进行储存。2014年,年初仓库库存为0,正常生产时各加工点每年产量分别为50万、20万、40万、60万;若加工生产,仓库的容量分别为50万、90万、40万。单位运价表如下,找出总运费最小的方案。 仓库 加工点加工点1加工点2加工点3加工点4仓库196711仓库215968仓库3541111解:由题可得九、P270页 习题4 有9个小镇v1,v1.,v9,公路网络图如图所示,弧旁数据为该公路的长度,有运输队欲从v1到v9运货,问走哪一条路最短。解:由输出结果可得:最短路径为v1v2v6,最短距离为12。十、P272 习题10请求下面网络图中的
12、最小费用最大流,图中弧(vi,vj)赋权为(cij,bij)其中,cij为从vi到vj的流量,bij为从vi到vj的单位流量的费用。解:由输出结果可得,最大流为5,最小费用为39十一、 P299 习题10假设某生产过程包含a,b,c,d,e,f,g,h,i共9道工序,各工序所需时间和紧前工序如下表:工序名称所需时间/天紧前工序a62/b38/c14ad23be48b,cf22dg30fh16ei29g,h请绘制网络计划图解:结果为:绘制的网络图如下:实验总结:通过这次的管理运筹学的计算机求解实验,我能够利用软件来解决复杂的企业生产管理问题并对实验结果进行分析并可以借此对具体的问题进行改进。此次的实验,实验过程很简单,稍微复杂的部分是对实验结果进行分析,我在分析的过程中遇到过小小的问题,但也能通过教材查阅把问题解决。这次的实验让我收获不少。教师评语与成绩: