《液晶材料简介与几种胆甾型液晶材料的合成.doc》由会员分享,可在线阅读,更多相关《液晶材料简介与几种胆甾型液晶材料的合成.doc(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、长 春 理 工 大 学科 研 训 练 报 告 材料科学与工程 学院 0806211 班姓 名 刘春雨 时 间 第19,20周 地 点 西区实验楼114 指导教师 宋静 目 的:通过科研训练,使大三本科生初步接触科研工作,做好从学习到科研的衔接过程,按照“分配科研训练题目题目初步了解广泛搜索文献资料文献综述拟定实验思路进行简单实验撰写科研训练报告,谈体会和心得”的过程,培养学生科学地分析问题和设计合理实验方案的能力,规范的实验操作以及发现问题和解决问题的能力。主要内容:液晶材料简介与几种胆甾型液晶材料的合成一液晶的简介和分类随着人们对液晶的逐渐了解,发现液晶物质基本上都是有机化合物,现有的有机化
2、合物中每200种中就有一种具有液晶相。显示用液晶材料是由多种小分子有机化合物组成的,现已发展成很多种类,例如各种联苯腈、酯类、环己基(联) 苯类、含氧杂环苯类、嘧啶环类、二苯乙炔类、乙基桥键类和烯端基类以及各种含氟苯环类等。人们通常根据液晶形成的条件,将液晶分为溶致液晶( Lyot ropic liquid crystal s ) 和热致液晶( Thermot ropic liquid crystal s) 两大类。1.1溶致液晶将某些有机物放在一定的溶剂中,由于溶剂破坏结晶晶格而形成的液晶,被称为溶致液晶。比如:简单的脂肪酸盐、离子型和非离子型表面活性剂等。溶致液晶广泛存在于自然界、生物体中
3、,与生命息息相关,但在显示中尚无应用。1.2热致液晶热致液晶是由于温度变化而出现的液晶相。低温下它是晶体结构,高温时则变为液体,这里的温度用熔点( Tm) 和清亮点( Tc ) 来标示。液晶单分子都有各自的熔点和清亮点,在中间温度则以液晶形态存在。目前用于显示的液晶材料基本上都是热致液晶。在热致液晶中,又根据液晶分子排列结构分为三大类:近晶相(Smectic) 、向列相(Nematic) 和胆甾相(Cholesteric) 。1. 2. 1 胆甾相液晶这类液晶大都是胆甾醇的衍生物。胆甾醇本身不具有液晶性质,其中只有当O H 基团被置换,形成胆甾醇的酯化物、卤化物及碳酸酯,才成为胆甾相液晶。并且
4、随着相变而显示出特有颜色的液晶相。胆甾相液晶在显示技术中很有用, TN、STN 等显示都是在向列相液晶中加入不同比例的胆甾相液晶而获得的。另外,温度计也应用于此液晶。1. 2. 2 近晶相液晶虽然目前液晶显示技术中主要应用的是向列相液晶,而近晶相液晶黏度大,分子不易转动,即响应速度慢,被认为不宜作显示器件。但是向列相液晶显示模式几乎已接近极限,从TN 到STN 直至FSTN(Formulated Super Twisted Nematic) 格式化超级扭曲向列,对其应用没有新的理论模式。因而,人们将目光重新转移到了近晶相液晶上,目前各近晶相中的手性近晶C 相,即铁电相引起人们广泛兴趣。铁电液晶
5、具备向列相液晶所不具备的高速度(微秒级) 和记忆性的优异特征,它们在最近几年得到大量研究。1. 2. 3 向列相液晶向列相液晶又称丝状液晶。在应用上,与近晶相液晶相比,向列相液晶各个分子容易顺着长轴方向自由移动,因而黏度小,富于流动性。向列相液晶分子的排列和运动比较自由,对外界作用相当敏感,因而应用广泛。向列相液晶与胆甾相液晶可以互相转换,在向列相液晶中加入旋光材料,会形成胆甾相,在胆甾相液晶中加入消旋光向列相材料,能将胆甾相转变成向列相。2 液晶显示中所用液晶材料的主要分类液晶材料介于晶体与液体之间性质,兼有液体与晶体的特性,一方面,液晶具有流体的流动特性;另一方面,液晶又呈现出晶体的空间各
6、向异性,包括介电特性、磁极化、光折射率等空间各向异性。液晶分子的部分有序排列还使得液晶具有类似晶体的、能承受扰乱这种秩序的切变应力。即使液晶具有切变弹性模量。对于实际显示器件性能的影响,液晶材料有许多技术参数,包括光电参数与物性参数,主要有介电各向异性、双折射率n 、体积黏度、弹性常数K、相变温度Tm/ Tc (熔点 清亮点) 和液晶电阻率等。根据液晶的上述特性产生出来的光电效应,把液晶对电场、磁场、光线和温度等外界条件的变化在一定下装换成可视信号,就可以制成显示器,即液晶显示器件。目前,各种形态的液晶材料基本上都用于开发液晶显示器,现在已开发出的有各种向列相液晶、聚合物分散液晶、双(多) 稳
7、态液晶、铁电液晶和反铁电液晶显示器等。而在液晶显示中,开发最成功、市场占有量最大、发展最快的是向列相液晶显示器。按照液晶显示模式, 常见向列相显示就有TN (扭曲向列相) 模式、H TN (高扭曲向列相) 模式、STN (超扭曲向列相) 模式、TF T (薄膜晶体管) 模式等。其中TF T 模式是近10 年发展最快的显示模式。2. 1 TN ( Twist Nematic) 扭曲向列型液晶材料TN 型液晶材料的发展起源于1968 年,当时美国公布了动态散射液晶显示(DSM2LCD) 技术。但由于提供的液晶材料的结构不稳定性,使它们作为显示材料的使用受到极大的限制。1971 年扭曲向列相液晶显示
8、器( TN2LCD) 问世后,介电各向异性为正的TN2液晶材料便很快开发出来;特别是1972年相对结构稳定的联苯腈系列液晶材料由Gray G等合成出来后,满足了当时电子手表、计算器和仪表显示屏等LCD 器件的性能要求,从而真正形成了TN2LCD 产业时代。TN2LCD 用的液晶材料已发展了很多种类。它们的特点是分子结构稳定,向列相温度范围较宽,相对黏度较低。不仅可以满足混合液晶的高清亮点、低黏度,而且能保证体系具有良好的低温性能。联苯环类液晶化合物的n 值较大,是改善液晶陡度的有效成分。嘧啶类化合物的K33/ K11 值较小,只有0. 60 左右,在TN2LCD 和STN2LCD 液晶材料配方
9、中,经常用它们来调节温度序数和n 值。而二氧六环类液晶化合物是调节“多路驱动”性能的必需成分。TN 液晶一般分子链较短,特性参数调整较困难,所以特性差别比较明显。2. 2 STN( Super TN) 超扭曲向列相型液晶材料自1984 年发明了超扭曲向列相液晶显示器(STN2LCD) 以来,由于它的显示容量扩大,电光特性曲线变陡,对比度提高,要求所使用的向列相液晶材料电光性能更好,到80 年代末就形成了STN2LCD 产业,其代表产品有移动电话、电子笔记本、便携式微机终端。STN 型与TN 型结构大体相同,只不过液晶分子扭曲角度更大一些,特点是电光响应曲线更好,可以适应更多的行列驱动。STN2
10、LCD 用混晶材料的主要成分是酯类和联苯类液晶化合物,这两类液晶黏度较低,液晶相范围较宽,适合配制不同性能的混晶材料。另外为了满足STN 混晶的大K33/ K11 值和适度n 的要求,通常需要在混晶中添加炔类、嘧啶类、乙烷类和端烯类液晶化合物。调节混晶体系的n 通常用炔类单体、嘧啶类单体乙烷类单体等。K33/ K11 值对STN2LCD 的阈值锐角有很大影响, 较大的K33/K11 值使显示有较高的对比度。为了提高K33/K11 值,往往需要在混晶中添加短烷基链液晶化合物和端烯类液晶化合物。2. 3 TFT( Thin Film Transistor) 薄膜晶体管显示型液晶材料由于采用薄膜晶体
11、管阵列直接驱动液晶分子,消除了交叉失真效应,因而显示信息容量大;配合使用低黏度的液晶材料,响应速度极大提高,能够满足视频图像显示的需要。因此, TF T2LCD 较之TN型、STN 型液晶显示有了质的飞跃。TF T2LCD 用液晶材料与传统液晶材料有所不同。除了要求具备良好的物化稳定性、较宽的工作温度范围之外, TF T2LCD 用液晶材料还须具备以下特性:低黏度、高电压保持率、与TF T2LCD 相匹配的光学各向异性( n) 。目前针对TFT2LCD 用液晶材料的合成设计趋势集中于以下几个方面: (1) 以氟原子或含氟基团作为极性端基取代氰基; (2) 在液晶分子侧链、桥键引入氟原子来调节液
12、晶相变区间、介电各向异性等性能参数; (3) 含有环己烷,尤其是双环己烷骨架的液晶分子得到广泛重视; (4) 乙撑类柔性基团作桥键的液晶。在液晶显示材料中,液晶材料大都是由几种乃至十几种单体液晶材料混合而成。向列相液晶和胆甾相液晶目前已具有非常广泛的应用,尤其是在液晶平板显示器上的应用,市场极大。随着液晶化合物种类的不断增加,液晶化合物的结构与性能之间的关系逐渐为人们所认识。反过来,由性能- 结构之间的关系又可以指导具有新型结构、具备特定功能的液晶分子的合成。单一的化合物难以满足实际应用中的苛刻要求,通过将不同的液晶单体进行科学混配,则可以弥补相互性能上的不足之处。这样,通过合成出在某些性能上
13、具有独到之处的液晶化合物,并将其应用于混合液晶配方中,也能达到提高显示性能的目的。二 胆甾相液晶自1992 年发现胆甾相液晶具有零场下多稳定相态织构现象以来,反射式胆甾相液晶显示(Cholesteric liquid crystal display ,简称:Ch2LCD) 已发展成为一种新型显示模式。最突出的优点是具有零场记忆特性,在零电场时,能长期保持显示内容,其能耗只有TFT2LCD 的1/ 8 左右。由于不需要偏振片和背光源,具有高反射能力和宽视角,能够实现类似纸般的阅读效果,特别适用于电子书籍阅读器、商业广告等领域。美国、日本、欧洲和中国等国家投入了大量人力、物力从事这方面的基础研究和
14、应用开发工作,发展很快。2000 年开发出黄绿模式胆甾相液晶电子书籍 ,2001 年开发出黑白模式电子书籍2003 年已发展到全彩色模式e2book ,成为近几年液晶显示领域的一个热点。显示用胆甾相液晶材料是由宽温向列相液晶组合物(Nematic liquid crystal components) 和手性组合物(Chiral components) 配制而成,具有平面织构(Planar Texture) 、焦锥织构(Focal Conic Texture)等多种稳定相态的液晶材料。与其他液晶材料相比,胆甾相液晶材料的螺距较短、双折射率大、手性组分含量高。1胆甾相液晶材料的性能要求胆甾相液晶材
15、料独特的螺旋结构决定了它特殊的光学特性7 。对于反射式液晶显示,其液晶材料必须满足Bragg 方程(1) ,即中心反射波长(0) 与液晶材料的螺矩( p) 及其平均折射率(n )成正比:0 = .n p (1)由于液晶材料具有介电各向异性、折射率ne 和no ,平均折射率(n ) 为( ne + 2 no ) / 3。例如,若一液晶的ne = 1. 70 , no = 1. 50 ,为了反射出波长=550nm 的可见光,其螺矩应约为350nm。另一方面,液晶显示的反射光谱波带() 是与液晶材料的螺矩( p) 及双折射率(n = ne - no)成正比: = pn (2)从公式(2) 中可见,当
16、p 值一定时, 在满足Bragg反射(即值一定) 的前提下, 提高胆甾相液晶材料的n ,有利于改善液晶反射效果。液晶材料的螺距p 和手性掺加剂的螺旋扭曲力常数(Helical Twisting Power ,简称HTP 值) 及其在液晶组合物中的含量Xc 关系是:p = (HTP) Xc - 1 (3)胆甾相液晶材料的HTP 值是由手性分子自身性质决定。当p 值一定时,手性分子的HTP 值越大,在其液晶材料中的含量( Xc)相对越少,越有利于胆甾相液晶的性能改善。由于不同Ch2LCD模式具有不同的螺矩,只有通过调节不同HTP 值的手性组分及其在液晶材料中的含量来改变螺矩和反射波长(或显示屏颜色
17、) 。在胆甾相液晶材料中,其n 、介电各向异性() 是由向列相液晶组合物性能决定,其粘度是由向列相液晶组合物和手性组合物共同决定。要改善胆甾相液晶显示性能,降低工作电压、增加亮度、提高响应速度和工作温度范围、实现黑白或全色彩的高对比度显示,除了改进显示方法外,必须在提高液晶材料的双折射率、扩大介电各向异性、降低粘度、减少手性组分含量等方面解决问题。因此,设计与合成新型高HTP 值的手性化合物分子,开发低粘度、高n 值、高值液晶分子已成为近几年的重要新课题。2 胆甾相液晶的合成自18 88年液晶被发现后人们对其特殊性质的认识不断深入。它具有力、光、电、声、热、气等多种效应,这些与众不同的性质使之
18、作为一种新材料被越来越广泛地应用到各个领域。胆固醇脂类液晶在一定条件下随温度、磁场、电场、机械应力、气体浓度的变化发生色彩的变化,可用于制作液晶温度计、气敏元件、电子元件、变色物质等,还可用于无损探伤、微波测量、疾病诊断、定向反应等化学、化工、冶金、医学领域,其新的合成和应用报道层出不穷,合成方法也不断改进。本文用羧酸酰氯与胆固醇反应合成胆甾型液晶。许多文献在反应中都加入了氯化氢吸收剂,如N,N一二甲基苯胺、毗吮等,我们在实践中观察到该法有时分离纯化麻烦、收率不高,但改进后的蒸出氯化氢法效果良好,并用该法成功地合成了Z一51一二十四碳烯酸胆固醇脂。三 实验部分熔点测定使用APPAREIL、MO
19、NAND一JOUAN熔点测定仪,温度计未较正;红外光谱使用岛津一45 0型红外光谱仪(除标明外均为嗅化钾压片);D SC曲线使用岛津一40综合热分析仪;薄层检测使用硅胶G F 25 4(200一62 0目,上海化学试剂采购供应站);柱层析使用60一10目硅胶;二十四碳烯酸自己合成;其余药品均为化学纯商品。3.1胆固醇丙酸脂的合成在250 m l三颈瓶中加入54.5 9(0.7 3 6m o l)丙酸、7 6.3 9(0.700 m o l)新蒸氯化亚矾、几滴N,lN一二甲基甲酞胺,水浴回流23 h,再向反应瓶中加入4 1 9(0.106 m o l)胆固醇、13 0m l(1.122 m o
20、l)N,N一二甲基苯胺,水浴回流3h。以30份石油醚和一份乙醚混合液为展开剂薄层检测反应终点反应完后取上层蒸出20以下的馏份,冷却后乙醇重结晶3次,得白色固体34.5 9,产率73.5%,R f值为0.70(石油醚:乙醚一30:1),熔点见表l(下同)。3.2胆固醇苯甲酸醋的合成采用胆固醇与苯甲酸脂的摩尔比为1:2的用量仿上操作,产率“%,R f值为0.54 (展开剂同上) 3.3胆固醇壬酸脂的合成在2 50 m l三颈瓶中加入8.2 9(0.0518m o l)壬酸、1 1.9 9(0.100 m o l)新蒸氯化亚讽、几滴N,N一二甲基甲酞胺,水浴回流3 h,减压蒸去低沸点物质,然后加入1
21、0 g(0.025 mol)胆固醇,通氮气,120左右回流l h,同时驱赶HC I,薄层检测反应终点(同上展开剂)。反应完后无水乙醇重结晶3次,得白色晶体10.5 g,产率74.5%,R f值为0.5 6。3.4胆固醇丁酸脂的合成制丁酸氯时让丁酸过量少许,不再减压蒸馏,其余仿1.3操作。产率17%,R f值为0.07。3.5胆固醇油醇碳酸脂的合成3.5.1光气的制备在250 m l的三颈瓶中加入20g50%的发烟硫酸,水浴加热,以1滴/5s的速度滴入四氯化碳即可产生连续稳定的光气。3.5.2胆固醇氯甲酸脂的制备把15g(0.038 mol)胆固醇溶于干燥的200lm乙醚中,并倾入250 ml的
22、三颈烧瓶,通入连续稳定的光气至成黄色溶液,再持续12 h,用氮气驱尽残余光气,薄层检测反应终点(用7份石油醚和l份乙醚的混合液为展开剂),反应完后蒸去含光气的乙醚,丙酮重结晶1次,得白色产品10.7g,产率71.3%。熔点117 文献值118119 R f值为0.7 0(石油醚:乙醚7:1) 3.53胆固醇油醇碳酸脂的合成在装有冷凝管滴液通氮气导管的250 m l的三颈烧瓶中放入13.47g(0.030 mol胆固醇氯甲酸脂,20 ml无水苯溶之,再加入8.04g(0.030 mol)油醇,通氮气,搅拌下滴加由2.37g(0.030 mol)毗咙和3 0 m l成的溶液滴加完毕继续搅拌Z h,
23、滤去白色沉淀,滤液蒸出苯得粗制品,用10份石油醚和1份乙醚组成的洗脱剂柱层析,收集R f值为0.56的物质,蒸去溶剂得稠状物,产率50%。I R(液膜,V,max:,cm一):1740(C =O)、1250(C一O一C)3.6胆固醇二十四碳烯酸脂的合成把15 g(0.041 mol)Z一1 5一二十四碳烯酸5.0 g(0.420 mol)新蒸氯化亚矾、几滴N,N一二甲基甲酞胺加入到250 ml的三颈烧瓶中,水浴反应至无气泡产生后再持续半小时,减压蒸去低沸点物质,然后加入9.0 g(0.023 mlo)胆固醇, 水浴回流10 mni再通氮气并加热至130反应l h,薄层检测反应终点,反应完后冷却
24、,以石油醚:乙醚30:1的溶液为洗脱剂用硅胶进行柱层析,收集Rf值为0.55的物质,蒸去溶剂,放里数天,得白色蜡状固体14.6g产率84.5%熔点:39.4 清亮点:50.9四. 结果与讨论对产物进行差示扫描量热分析(升温速度1 0/m in)结果如表1:胆固醇二十四碳烯酸脂的D SC曲线如右图: 本文曾参照资料合成胆固醇的丙酸脂、壬酸脂、苯甲酸脂、油酸脂,但发现多次洗涤使产品损失严重分层困难、萃取剂易损失、产品纯度不高、收率低,后来对该法纯化过程进行改进(如1.1,1.2的合成),但仍有产品纯度不高的缺点。直接蒸出氯化氢法的薄层检测表明:梭酸酞氯较大过量时,反应完全进行,而且克服了上述缺点(
25、如1.3,1.4,1.6的合成)。 胆固醇二十四碳烯酸脂液晶态无色彩的变化,但它的DSC曲线两次相变表明了它在一定温度下具有液晶性质,其核磁共振谱具有类似分子结构的胆固醇脂的一般特点。参考文献1王良御、廖松生.液晶化学.北京:科学出版社,19 8 82纪极英编著.生物液晶.北京:科学出版社,19 8 73顾树珍、杨新浩等.化学世界,1990,7:3084欧乞碱.云南植物研究,1 9 8 1,3(2):1 8 15李述文、范如霖译.实用有机化学手册.上海:上海学技术出版社.五 科研训练心得19.2 0两周的科研训练,虽然时间不是很长,但是依然受益匪浅,通过科研训练。提高了自己查找,阅读,获取有价值的资料文献论文的能力,了解到许多查找文献资料的途径,为以后的科研工作奠定了基础。而且查找有关液晶材料以及液晶材料合成方面的文献,为下个学期的专业课开了个好头,对自己的专业有了一个初步的认识,激发了今后的学期兴趣指导教师评语:成绩评定 签字 年 月 日