《单向可控硅和双向可控硅原理及应用大全.doc》由会员分享,可在线阅读,更多相关《单向可控硅和双向可控硅原理及应用大全.doc(310页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、目录可控硅元件的工作原理及基本特性可控硅元件可控硅元件的结构可控硅知识的问与答可控硅元件可控硅整流电路如何鉴别可控硅的三个极晶闸管的工作原理可关断晶闸管(GTO)硅控制开关(SCS)逆导晶闸管(RCT)硅双向开关(SBS)硅单向开关SUS(单向触发晶体管)双向触发二极管(DIAC)固态继电器简介S/HS固态继电器原理与应用向强电冲击的先锋-可控硅双向触发二极管固体继电器SSR双向触发二极管单结晶体管(双基极二极管)原理单结晶体管原理电动机、变压器的控制电力电子技术向高频领域发展应重新认识的几个概念认识变压器、电抗器光控晶闸管可控硅整流电路中的波形系数可控硅元件的工作原理及基本特性1、工作原理可
2、控硅是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它看作由一个PNP管和一个NPN管所组成,其等效图解如图1所示图1 可控硅等效图解图当阳极A加上正向电压时,BG1和BG2管均处于放大状态。此时,如果从控制极G输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流ic2=2ib2。因为BG2的集电极直接与BG1的基极相连,所以ib1=ic2。此时,电流ic2再经BG1放大,于是BG1的集电极电流ic1=1ib1=12ib2。这个电流又流回到BG2的基极,表成正反馈,使ib2不断增大,如此正向馈循环的结果,两个管子的电流剧增,可控硅使饱和导通。由于BG
3、1和BG2所构成的正反馈作用,所以一旦可控硅导通后,即使控制极G的电流消失了,可控硅仍然能够维持导通状态,由于触发信号只起触发作用,没有关断功能,所以这种可控硅是不可关断的。由于可控硅只有导通和关断两种工作状态,所以它具有开关特性,这种特性需要一定的条件才能转化,此条件见表1表1 可控硅导通和关断条件状态条件说明从关断到导通 1、阳极电位高于是阴极电位2、控制极有足够的正向电压和电流两者缺一不可维持导通 1、阳极电位高于阴极电位2、阳极电流大于维持电流两者缺一不可从导通到关断 1、阳极电位低于阴极电位2、阳极电流小于维持电流任一条件即可 2、基本伏安特性可控硅的基本伏安特性见图2图2 可控硅基
4、本伏安特性 (1)反向特性当控制极开路,阳极加上反向电压时(见图3),J2结正偏,但J1、J2结反偏。此时只能流过很小的反向饱和电流,当电压进一步提高到J1结的雪崩击穿电压后,接差J3结也击穿,电流迅速增加,图3的特性开始弯曲,如特性OR段所示,弯曲处的电压URO叫“反向转折电压”。此时,可控硅会发生永久性反向击穿。图3 阳极加反向电压(2)正向特性当控制极开路,阳极上加上正向电压时(见图4),J1、J3结正偏,但J2结反偏,这与普通PN结的反向特性相似,也只能流过很小电流,这叫正向阻断状态,当电压增加,图3的特性发生了弯曲,如特性OA段所示,弯曲处的是UBO叫:正向转折电压 图4 阳极加正向
5、电压由于电压升高到J2结的雪崩击穿电压后,J2结发生雪崩倍增效应,在结区产生大量的电子和空穴,电子时入N1区,空穴时入P2区。进入N1区的电子与由P1区通过J1结注入N1区的空穴复合,同样,进入P2区的空穴与由N2区通过J3结注入P2区的电子复合,雪崩击穿,进入N1区的电子与进入P2区的空穴各自不能全部复合掉,这样,在N1区就有电子积累,在P2区就有空穴积累,结果使P2区的电位升高,N1区的电位下降,J2结变成正偏,只要电流稍增加,电压便迅速下降,出现所谓负阻特性,见图3的虚线AB段。这时J1、J2、J3三个结均处于正偏,可控硅便进入正向导电状态-通态,此时,它的特性与普通的PN结正向特性相似
6、,见图2中的BC段3、触发导通在控制极G上加入正向电压时(见图5)因J3正偏,P2区的空穴时入N2区,N2区的电子进入P2区,形成触发电流IGT。在可控硅的内部正反馈作用(见图2)的基础上,加上IGT的作用,使可控硅提前导通,导致图3的伏安特性OA段左移,IGT越大,特性左移越快。图5 阳极和控制极均加正向电压 可控硅元件可控硅元件的结构一种以硅单晶为基本材料的P1N1P2N2四层三端器件,创制于1957年,由于它特性类似于真空闸流管,所以国际上通称为硅晶体闸流管,简称晶闸管T。又由于晶闸管最初应用于可控整流方面所以又称为硅可控整流元件,简称为可控硅SCR。在性能上,可控硅不仅具有单向导电性,
7、而且还具有比硅整流元件(俗称“死硅”)更为可贵的可控性。它只有导通和关断两种状态。可控硅能以毫安级电流控制大功率的机电设备,如果超过此频率,因元件开关损耗显著增加,允许通过的平均电流相降低,此时,标称电流应降级使用。可控硅的优点很多,例如:以小功率控制大功率,功率放大倍数高达几十万倍;反应极快,在微秒级内开通、关断;无触点运行,无火花、无噪音;效率高,成本低等等。可控硅的弱点:静态及动态的过载能力较差;容易受干扰而误导通。可控硅从外形上分类主要有:螺栓形、平板形和平底形。可控硅元件的结构不管可控硅的外形如何,它们的管芯都是由P型硅和N型硅组成的四层P1N1P2N2结构。见图1。它有三个PN结(
8、J1、J2、J3),从J1结构的P1层引出阳极A,从N2层引出阴级K,从P2层引出控制极G,所以它是一种四层三端的半导体器件。图1、可控硅结构示意图和符号图 UID139222帖子7045精华23威望43623 芯币8513 枚阅读权限100在线时间905 小时注册时间2009-7-10最后登录2010-5-6查看详细资料可控硅知识的问与答一、可控硅的概念和结构?晶闸管又叫可控硅。自从20世纪50年代问世以来已经发展成了一个大的家族,它的主要成员有单向晶闸管、双向晶闸管、光控晶闸管、逆导晶闸管、可关断晶闸管、快速晶闸管,等等。今天大家使用的是单向晶闸管,也就是人们常说的普通晶闸管,它是由四层半
9、导体材料组成的,有三个PN结,对外有三个电极图2(a):第一层P型半导体引出的电极叫阳极A,第三层P型半导体引出的电极叫控制极G,第四层N型半导体引出的电极叫阴极K。从晶闸管的电路符号图2(b)可以看到,它和二极管一样是一种单方向导电的器件,关键是多了一个控制极G,这就使它具有与二极管完全不同的工作特性。图2二、晶闸管的主要工作特性为了能够直观地认识晶闸管的工作特性,大家先看这块示教板(图3)。晶闸管VS与小灯泡EL串联起来,通过开关S接在直流电源上。注意阳极A是接电源的正极,阴极K接电源的负极,控制极G通过按钮开关SB接在3V直流电源的正极(这里使用的是KP5型晶闸管,若采用KP1型,应接在
10、1.5V直流电源的正极)。晶闸管与电源的这种连接方式叫做正向连接,也就是说,给晶闸管阳极和控制极所加的都是正向电压。现在我们合上电源开关S,小灯泡不亮,说明晶闸管没有导通;再按一下按钮开关SB,给控制极输入一个触发电压,小灯泡亮了,说明晶闸管导通了。这个演示实验给了我们什么启发呢?图3这个实验告诉我们,要使晶闸管导通,一是在它的阳极A与阴极K之间外加正向电压,二是在它的控制极G与阴极K之间输入一个正向触发电压。晶闸管导通后,松开按钮开关,去掉触发电压,仍然维持导通状态。晶闸管的特点: 是“一触即发”。但是,如果阳极或控制极外加的是反向电压,晶闸管就不能导通。控制极的作用是通过外加正向触发脉冲使
11、晶闸管导通,却不能使它关断。那么,用什么方法才能使导通的晶闸管关断呢?使导通的晶闸管关断,可以断开阳极电源(图3中的开关S)或使阳极电流小于维持导通的最小值(称为维持电流)。如果晶闸管阳极和阴极之间外加的是交流电压或脉动直流电压,那么,在电压过零时,晶闸管会自行关断。三、用万用表可以区分晶闸管的三个电极吗?怎样测试晶闸管的好坏呢?普通晶闸管的三个电极可以用万用表欧姆挡R100挡位来测。大家知道,晶闸管G、K之间是一个PN结图2(a),相当于一个二极管,G为正极、K为负极,所以,按照测试二极管的方法,找出三个极中的两个极,测它的正、反向电阻,电阻小时,万用表黑表笔接的是控制极G,红表笔接的是阴极
12、K,剩下的一个就是阳极A了。测试晶闸管的好坏,可以用刚才演示用的示教板电路(图3)。接通电源开关S,按一下按钮开关SB,灯泡发光就是好的,不发光就是坏的四、晶闸管在电路中的主要用途是什么?普通晶闸管最基本的用途就是可控整流。大家熟悉的二极管整流电路属于不可控整流电路。如果把二极管换成晶闸管,就可以构成可控整流电路。现在我画一个最简单的单相半波可控整流电路图4(a)。在正弦交流电压U2的正半周期间,如果VS的控制极没有输入触发脉冲Ug,VS仍然不能导通,只有在U2处于正半周,在控制极外加触发脉冲Ug时,晶闸管被触发导通。现在,画出它的波形图图4(c)及(d),可以看到,只有在触发脉冲Ug到来时,
13、负载RL上才有电压UL输出(波形图上阴影部分)。Ug到来得早,晶闸管导通的时间就早;Ug到来得晚,晶闸管导通的时间就晚。通过改变控制极上触发脉冲Ug到来的时间,就可以调节负载上输出电压的平均值UL(阴影部分的面积大小)。在电工技术中,常把交流电的半个周期定为180,称为电角度。这样,在U2的每个正半周,从零值开始到触发脉冲到来瞬间所经历的电角度称为控制角;在每个正半周内晶闸管导通的电角度叫导通角。很明显,和都是用来表示晶闸管在承受正向电压的半个周期的导通或阻断范围的。通过改变控制角或导通角,改变负载上脉冲直流电压的平均值UL,实现了可控整流。五、在桥式整流电路中,把二极管都换成晶闸管是不是就成
14、了可控整流电路了呢?在桥式整流电路中,只需要把两个二极管换成晶闸管就能构成全波可控整流电路了。现在画出电路图和波形图(图5),就能看明白了。六、晶闸管控制极所需的触发脉冲是怎么产生的呢?晶闸管触发电路的形式很多,常用的有阻容移相桥触发电路、单结晶体管触发电路、晶体三极管触发电路、利用小晶闸管触发大晶闸管的触发电路,等等。今天大家制作的调压器,采用的是单结晶体管触发电路。七、什么是单结晶体管?它有什么特殊性能呢?单结晶体管又叫双基极二极管,是由一个PN结和三个电极构成的半导体器件(图6)。我们先画出它的结构示意图图7(a)。在一块N型硅片两端,制作两个电极,分别叫做第一基极B1和第二基极B2;硅
15、片的另一侧靠近B2处制作了一个PN结,相当于一只二极管,在P区引出的电极叫发射极E。为了分析方便,可以把B1、B2之间的N型区域等效为一个纯电阻RBB,称为基区电阻,并可看作是两个电阻RB2、RB1的串联图7(b)。值得注意的是RB1的阻值会随发射极电流IE的变化而改变,具有可变电阻的特性。如果在两个基极B2、B1之间加上一个直流电压UBB,则A点的电压UA为:若发射极电压UEUA,二极管VD截止;当UE大于单结晶体管的峰点电压UP(UP=UDUA)时,二极管VD导通,发射极电流IE注入RB1,使RB1的阻值急剧变小,E点电位UE随之下降,出现了IE增大UE反而降低的现象,称为负阻效应。发射极
16、电流IE继续增加,发射极电压UE不断下降,当UE下降到谷点电压UV以下时,单结晶体管就进入截止状态。八、怎样利用单结晶体管组成晶闸管触发电路呢?单结晶体管组成的触发脉冲产生电路在今天大家制作的调压器中已经具体应用了。为了说明它的工作原理,我们单独画出单结晶体管张弛振荡器的电路(图8)。它是由单结晶体管和RC充放电电路组成的。合上电源开关S后,电源UBB经电位器RP向电容器C充电,电容器上的电压UC按指数规律上升。当UC上升到单结晶体管的峰点电压UP时,单结晶体管突然导通,基区电阻RB1急剧减小,电容器C通过PN结向电阻R1迅速放电,使R1两端电压Ug发生一个正跳变,形成陡峭的脉冲前沿图8(b)
17、。随着电容器C的放电,UE按指数规律下降,直到低于谷点电压UV时单结晶体管截止。这样,在R1两端输出的是尖顶触发脉冲。此时,电源UBB又开始给电容器C充电,进入第二个充放电过程。这样周而复始,电路中进行着周期性的振荡。调节RP可以改变振荡周期。九、在可控整流电路的波形图中,发现晶闸管承受正向电压的每半个周期内,发出第一个触发脉冲的时刻都相同,也就是控制角和导通角都相等,那么,单结晶体管张弛振荡器怎样才能与交流电源准确地配合以实现有效的控制呢?为了实现整流电路输出电压“可控”,必须使晶闸管承受正向电压的每半个周期内,触发电路发出第一个触发脉冲的时刻都相同,这种相互配合的工作方式,称为触发脉冲与电
18、源同步。怎样才能做到同步呢?大家再看调压器的电路图(图1)。请注意,在这里单结晶体管张弛振荡器的电源是取自桥式整流电路输出的全波脉冲直流电压。在晶闸管没有导通时,张弛振荡器的电容器C被电源充电,UC按指数规律上升到峰点电压UP时,单结晶体管VT导通,在VS导通期间,负载RL上有交流电压和电流,与此同时,导通的VS两端电压降很小,迫使张弛振荡器停止工作。当交流电压过零瞬间,晶闸管VS被迫关断,张弛振荡器得电,又开始给电容器C充电,重复以上过程。这样,每次交流电压过零后,张弛振荡器发出第一个触发脉冲的时刻都相同,这个时刻取决于RP的阻值和C的电容量。调节RP的阻值,就可以改变电容器C的充电时间,也
19、就改变了第一个Ug发出的时刻,相应地改变了晶闸管的控制角,使负载RL上输出电压的平均值发生变化,达到调压的目的。双向晶闸管的T1和T2不能互换。否则会损坏管子和相关的控制电路。 UID139222帖子7045精华23威望43623 芯币8513 枚阅读权限100在线时间905 小时注册时间2009-7-10最后登录2010-5-6查看详细资料可控硅元件可控硅整流电路一、单相半波可控整流电路1、工作原理电路和波形如图1所示,设u2=U2sin。图1 单相半波可控整流正半周:0tt1,ug=0,T正向阻断,id=0,uT=u2,ud=0t=t时,加入ug脉冲,T导通,忽略其正向压降,uT=0,ud
20、=u2,id=ud/Rd。负半周:t2当u2自然过零时,T自行关断而处于反向阻断状态,ut=0,ud=0,id=0。从0到t1的电度角为,叫控制角。从t1到的电度角为,叫导通角,显然+=。当=0,=180度时,可控硅全导通,与不控整流一样,当=180度,=0度时,可控硅全关断,输出电压为零。 2、各电量关系ud波形为非正弦波,其平均值(直流电压):由上式可见,负载电阻Rd上的直流电压是控制角的函数,所以改变的大小就可以控制直流电压Ud的数值,这就是可控整流意义之所在。流过Rd的直流电流Id:Ud的有效值(均方根值):流过Rd的电流有效值:由于电源提供的有功功率P=UI,电源视在功率S=U2I(
21、U2是电源电压有效值),所以功率因数:由上式可见,功率因数cos也是的函数,当=0时,cos=0.707。显然,对于电阻性负载,单相半波可控整流的功率因数也不会是1。比值Ud/U、I/Id和cos随的变化数值,见表1,它们相应的关系曲线,如图2所示表1 Ud/U、I/Id和cos的关系0306090120150180Ud/UI/Idcos0.451.570.7070.421.660.6980.3381.880.6350.2252.220.5080.1132.870.3020.033.990.120-0图2 单相半波可控整流的电压、电流及功率因数与控制角的关系由于可控硅T与Rd是串联的,所以,流
22、过Rd的有效值电流I与平均值电流Id的比值,也就是流过可控硅T的有效值电流IT与平均值电流IdT的比值,即I/Id=It/IdT。二、单相桥式半控整流电路1、工作原理电路与波形如图3所示图3、单相桥式半控整流正半周:t1时刻加入ug1,T1导通,电流通路如图实线所示。uT1=0,ud=u2,uT2=-u2。u2过零时,T1自行关断。负半周:t2时刻加入ug2,T2导通,电流通路如图虚线所示,uT2=0,ud=-u2,ut1=u2。u2过零时T2自行关断。2、各电量关系由图3可见,ud波形为非正弦波,其幅值为半波整流的两倍,所以Rd上的直流电压Ud:直流电流Id:电压有效值U:电流有效值I:功率
23、因数cos:比值Ud/U,I/Id和cos随的变化数值见表2,相应关系曲线见图4表2 Ud/U、I/Id、cos与的关系表0306090120150180Ud/UI/Idcos0.91.11210.841.1790.9850.6761.3350.8960.451.5750.7170.2261.970.4260.062.8350.1690-0图4、单相全波和桥式电路电压、电流及功率因数与控制角的关系把单相全波整流单相半波整流进行比较可知:(1)当相同时,全波的输出直流电压比半波的大一倍。(2)在和Id相同时,全波的电流有效值比半波的减小倍。(3)相同时,全波的功率因数比半波的提高了倍。UID13
24、9222帖子7045精华23威望43623 芯币8513 枚阅读权限100在线时间905 小时注册时间2009-7-10最后登录2010-5-6查看详细资料(2)感性负载(不带续流二极管,见图5):图5 电感性负载无续流二极管 电机电器的电磁线圈、带电感滤波的电阻负载等均属于电感性负载。 电感具有障碍电流变化的作用可控硅T导通时,其压降uT=0,但电流id只能从零开始上升。id增加和减少时线圈Ld两端的感应电动势eL的极性变化如图示。 当电源电压u2下降及u20时,只要释放磁场能量可以维持id继续流通,可控硅T仍然牌导通状态,此时ud=u2。当u20时,虽然ud出现负值,但电流id的方向不变。
25、 当电流id减小到小于维持电流IH时,可控硅T自行关断,id=0,UT=u2,可控硅承受反压。 负载电压平均值:其中电感Ld两端电压的平均值为零。 电感Ld的存在使负载电压ud出现负值,Ld越大,ud负值越大,负载上直流电压Ud就越小,Id=Ud/Rd也越小,所以如果不采取措施,可控硅的输出就达不到应有的电压和电流。 (3)感性负载(带续流二极管,见图6):图6 电感性负载有续流二极管 在负载上并联一只续流二极管D,可使Ud提高到和电阻性负载时一样, 在电源电压u20时,D的作用有点:把电源负电压u2引到可控硅T两端,使T关断,uT=u2;给电感电流续流,形成iD;把负载短路,ud=0,避免u
26、d出现负值,使负载上直流输出电压ud提高。 负载电流为何控硅电流iT和二极管的续流iD之和,即id=iT+iD。当LdR时,iD下降很慢使id近似为一条水平线,所以流过T和D的电注平均值与有效值分别为:平均值:IdT=(/360)Id;IdD=(360-)/360Id;有效值:IT=根号下(/360)Id;ID=根号下(360-)/360Id 可控硅T开始导通后,如果电感Ld很大,iT的上升很慢,这就有可能导致触发脉冲消失时可控硅的电流还上升不到维持导通状态的维持电流,就是说,可控硅触发不了,为了使可控硅可靠触发,触发脉冲应该足够宽,或者在负载两端并联一只电阻,以利于加快iT的上升。 UID1
27、39222帖子7045精华23威望43623 芯币8513 枚阅读权限100在线时间905 小时注册时间2009-7-10最后登录2010-5-6查看详细资料如何鉴别可控硅的三个极鉴别可控硅三个极的方法很简单,根据P-N结的原理,只要用万用表测量一下三个极之间的电阻值就可以。阳极与阴极之间的正向和反向电阻在几百千欧以上,阳极和控制极之间的正向和反向电阻在几百千欧以上(它们之间有两个P-N结,而且方向相反,因此阳极和控制极正反向都不通)。控制极与阴极之间是一个P-N结,因此它的正向电阻大约在几欧-几百欧的范围,反向电阻比正向电阻要大。可是控制极二极管特性是不太理想的,反向不是完全呈阻断状态的,可
28、以有比较大的电流通过,因此,有时测得控制极反向电阻比较小,并不能说明控制极特性不好。另外,在测量控制极正反向电阻时,万用表应放在R*10或R*1挡,防止电压过高控制极反向击穿。若测得元件阴阳极正反向已短路,或阳极与控制极短路,或控制极与阴极反向短路,或控制极与阴极断路,说明元件已损坏。 UID139222帖子7045精华23威望43623 芯币8513 枚阅读权限100在线时间905 小时注册时间2009-7-10最后登录2010-5-6查看详细资料晶闸管的工作原理在中频炉中整流侧关断时间采用KP-60微秒以内,逆变侧关短时间采用KK-30微秒以内这也是KP管与KK管的主要区别晶闸管T在工作过
29、程中,它的阳极A和阴极K与电源和负载连接,组成晶闸管的主电路,晶闸管的门极G和阴极K与控制晶闸管的装置连接,组成晶闸管的控制电路。晶闸管的工作条件:1. 晶闸管承受反向阳极电压时,不管门极承受和种电压,晶闸管都处于关短状态。2. 晶闸管承受正向阳极电压时,仅在门极承受正向电压的情况下晶闸管才导通。3. 晶闸管在导通情况下,只要有一定的正向阳极电压,不论门极电压如何,晶闸管保持导通,即晶闸管导通后,门极失去作用。4. 晶闸管在导通情况下,当主回路电压(或电流)减小到接近于零时,晶闸管关断。从晶闸管的内部分析工作过程:晶闸管是四层三端器件,它有J1、J2、J3三个PN结图1,可以把它中间的NP分成
30、两部分,构成一个PNP型三极管和一个NPN型三极管的复合管图2当晶闸管承受正向阳极电压时,为使晶闸管导铜,必须使承受反向电压的PN结J2失去阻挡作用。图2中每个晶体管的集电极电流同时就是另一个晶体管的基极电流。因此,两个互相复合的晶体管电路,当有足够的门机电流Ig流入时,就会形成强烈的正反馈,造成两晶体管饱和导通,晶体管饱和导通。设PNP管和NPN管的集电极电流相应为Ic1和Ic2;发射极电流相应为Ia和Ik;电流放大系数相应为a1=Ic1/Ia和a2=Ic2/Ik,设流过J2结的反相漏电电流为Ic0,晶闸管的阳极电流等于两管的集电极电流和漏电流的总和:Ia=Ic1+Ic2+Ic0 或Ia=a
31、1Ia+a2Ik+Ic0若门极电流为Ig,则晶闸管阴极电流为Ik=Ia+Ig从而可以得出晶闸管阳极电流为:I=(Ic0+Iga2)/(1-(a1+a2)(11)式硅PNP管和硅NPN管相应的电流放大系数a1和a2随其发射极电流的改变而急剧变化如图3所示。当晶闸管承受正向阳极电压,而门极未受电压的情况下,式(11)中,Ig=0,(a1+a2)很小,故晶闸管的阳极电流IaIc0 晶闸关处于正向阻断状态。当晶闸管在正向阳极电压下,从门极G流入电流Ig,由于足够大的Ig流经NPN管的发射结,从而提高起点流放大系数a2,产生足够大的极电极电流Ic2流过PNP管的发射结,并提高了PNP管的电流放大系数a1
32、,产生更大的极电极电流Ic1流经NPN管的发射结。这样强烈的正反馈过程迅速进行。从图3,当a1和a2随发射极电流增加而(a1+a2)1时,式(11)中的分母1-(a1+a2)0,因此提高了晶闸管的阳极电流Ia.这时,流过晶闸管的电流完全由主回路的电压和回路电阻决定。晶闸管已处于正向导通状态。式(11)中,在晶闸管导通后,1-(a1+a2)0,即使此时门极电流Ig=0,晶闸管仍能保持原来的阳极电流Ia而继续导通。晶闸管在导通后,门极已失去作用。在晶闸管导通后,如果不断的减小电源电压或增大回路电阻,使阳极电流Ia减小到维持电流IH以下时,由于a1和a1迅速下降,当1-(a1+a2)0时,晶闸管恢复
33、阻断状态。UID139222帖子7045精华23威望43623 芯币8513 枚阅读权限100在线时间905 小时注册时间2009-7-10最后登录2010-5-6查看详细资料可关断晶闸管(GTO)可关断晶闸管GTO(Gate Turn-Off Thyristor)亦称门控晶闸管。其主要特点为,当门极加负向触发信号时晶闸管能自行关断。前已述及,普通晶闸管(SCR)靠门极正信号触发之后,撤掉信号亦能维持通态。欲使之关断,必须切断电源,使正向电流低于维持电流IH,或施以反向电压强近关断。这就需要增加换向电路,不仅使设备的体积重量增大,而且会降低效率,产生波形失真和噪声。可关断晶闸管克服了上述缺陷,
34、它既保留了普通晶闸管耐压高、电流大等优点,以具有自关断能力,使用方便,是理想的高压、大电流开关器件。GTO的容量及使用寿命均超过巨型晶体管(GTR),只是工作频纺比GTR低。目前,GTO已达到3000A、4500V的容量。大功率可关断晶闸管已广泛用于斩波调速、变频调速、逆变电源等领域,显示出强大的生命力。可关断晶闸管也属于PNPN四层三端器件,其结构及等效电路和普通晶闸管相同,因此图1仅绘出GTO典型产品的外形及符号。大功率GTO大都制成模块形式。尽管GTO与SCR的触发导通原理相同,但二者的关断原理及关断方式截然不同。这是由于普通晶闸管在导通之后即外于深度饱和状态,而GTO在导通后只能达到临
35、界饱和,所以GTO门极上加负向触发信号即可关断。GTO的一个重要参数就是关断增益,off,它等于阳极最大可关断电流IATM与门极最大负向电流IGM之比,有公式off =IATM/IGM off一般为几倍至几十倍。off值愈大,说明门极电流对阳极电流的控制能力愈强。很显然,off与昌盛 的hFE参数颇有相似之处。下面分别介绍利用万用表判定GTO电极、检查GTO的触发能力和关断能力、估测关断增益off的方法。1判定GTO的电极将万用表拨至R1档,测量任意两脚间的电阻,仅当黑表笔接G极,红表笔接K极时,电阻呈低阻值,对其它情况电阻值均为无穷大。由此可迅速判定G、K极,剩下的就是A极。2检查触发能力如
36、图2(a)所示,首先将表的黑表笔接A极,红表笔接K极,电阻为无穷大;然后用黑表笔尖也同时接触G极,加上正向触发信号,表针向右偏转到低阻值即表明GTO已经导通;最后脱开G极,只要GTO维持通态,就说明被测管具有触发能力。3检查关断能力现采用双表法检查GTO的关断能力,如图2(b)所示,表的档位及接法保持不变。将表拨于R10档,红表笔接G极,黑表笔接K极,施以负向触发信号,如果表的指针向左摆到无穷大位置,证明GTO具有关断能力。4估测关断增益off进行到第3步时,先不接入表,记下在GTO导通时表的正向偏转格数n1;再接上表强迫GTO关断,记下表的正向偏转格数n2。最后根据读取电流法按下式估算关断增
37、益:off=IATM/IGMIAT/IGK1n1/ K2n2 式中K1表在R1档的电流比例系数;K2表在R10档的电流比例系数。off10n1/ n2 此式的优点是,不需要具体计算IAT、IG之值,只要读出二者所对应的表针正向偏转格数,即可迅速估测关断增益值。注意事项:(1)在检查大功率GTO器件时,建议在R1档外边串联一节1.5V电池E,以提高测试电压和测试电流,使GTO可靠地导通。(2)要准确测量GTO的关断增益off,必须有专用测试设备。但在业余条件下可用上述方法进行估测。由于测试条件不同,测量结果仅供参考,或作为相对比较的依据。 UID139222帖子7045精华23威望43623 芯
38、币8513 枚阅读权限100在线时间905 小时注册时间2009-7-10最后登录2010-5-6查看详细资料硅控制开关(SCS)硅控制开关SCS(Silicon Controlled Switch)亦称四端小功率晶闸管。它属于新颖、多功能半导体器件。只要改变其接线方式,就可构成普通晶闸管(SCR)、可关断晶闸管(GTO)、逆导晶闸管(RCT)、互补型N门极晶闸管(NGT)、程控单结晶体管(PUT)、单结晶体管(UJT),此外还能构成NPN型晶体管 、PNP型晶体管、肖克莱二极管(SKD)、3种稳压二极管、N型或P型负阻器件,分别实现十多种半导体器件的电路功能。迄今为止,还不曾有哪种器件象它具
39、有如此众多的功能。因此它被誉为新颖“万能”器件亦当之无愧。硅控制开关属于PNPN四层四端器件,其内部结构、等效电路及符号如图1所示。等效电路是由NPN晶体管(T1)和PNP晶体管(T2)组成的。四个引出端分别是阳极A、阴极K、阳极门极GA、阴极门极GK。由于其门极触发电流极小(几微安),开关时间(tON、toFF)极短,所以它相当于一只高灵敏度的小功率晶闸管。容量一般为60V、0.5A,大多采用金属壳封装,管径为8mm,管脚排列顺序见图2。国外典型产品有3N58、3N81、MAS32、3SF11等。硅控制开关的最大特点是在PNPN的每一层都有一个引出端,所以使用极灵活。在不同接线方式下,硅控制
40、开关的电路功能详见表1。其中,肖克莱二极管SKD(Shockley Diode)属于四层、高速、可控半导体整流二极管,可作开关二极管或触发器,用于激光脉冲发生器中。除表中所列用途之外,硅控制开关还可用作继电器驱动器、延时电路、脉冲发生器、双稳态触发器、高灵敏度电平检测器。硅控制开关伯GTO使用时,需注意以下几点(参见图3):第一:A极接电源正极,K极接电源负极;第二:GA极加负脉冲时器件导通。加正脉冲时器件关断;第三:GK极加正脉冲时器件导通,加负脉冲时器件关断。下面介绍利用万用表检查硅控制开关的方法1检查三个PN结的单向导电性将万用表拨到R1k档,分别测量A-GA、GA-GK、GK -K之间
41、的正、反向电阻。正向电阻应为几千欧至十几千欧,反向电阻为无穷大,说明PN结具有单向导电性。2检查逆导性只将 GA与A短接,即可观察到逆导性。但为使效果更明显,现将GK与K也短接,此时A、K之间只有两个同极性并联着的硅PN结,而且K极是接PN结正极,A极接PN结的负极。因此,用黑表笔接K极,红表笔接A极,测出的是正向电阻,约为几千欧。该特性就称为“逆导”(反向导通之意)。若交换表笔位置,就无逆导性,电阻变成无穷大。3检查触发能力首先用黑表笔接A 极,红表笔接K极,电阻为无穷大,证明器件关断。再按下述步骤操作:(1)用红表笔尖搭一下GA极,然后脱开(但红表笔始终接着A极),为相当于给GA极加负脉冲
42、,若电阻迅速减小,则说明器件具有触发能力。(2)拿黑表笔搭一下GK极,旋即脱开,这相当于给GK极输入正脉冲,电阻值迅速降低,表明有触发能力。4检查关断能力首先利用上面介绍的方法使器件导通,再进行以下操作:(1)用黑表笔尖搭一下GA极,随即脱开,如果电阻变成无穷大,证明器件被关断,参见图4(a)。(2)用红表笔尖搭一下GK极,迅速脱开,电阻呈无穷大,说明SCS关断,参见图4(b)。 逆导晶闸管(RCT)逆导晶闸管RCT(Reverse-Conducting Thyristir)亦称反向导通晶闸管。其特点是在晶闸管的阳极与阴极之间反向并联一只二极管,使阳极与阴极的发射结均呈短路状态。由于这种特殊电
43、路结构,使之具有耐高压、耐高温、关断时间短、通态电压低等优良性能。例如,逆导晶闸管的关断时间仅几微秒,工作频率达几十千赫,优于快速晶闸管(FSCR)。该器件适用于开关电源、UPS不间断电源中,一只RCT即可代替晶闸管和续流二极管各一只,不仅使用方便,而且能简化电路设计。逆导晶闸管的符号、等效电路如图1(a)、(b)所示。其伏安特性见图2。由图显见,逆导晶闸管的伏安特性具有不对称性,正向特性与普通晶闸管SCR相同,而反向特性与硅整流管的正向特性相同(仅坐标位置不同)。逆导晶闸管的典型产品有美国无线电公司(RCA)生产的S3900MF,其外形见图1(c)。它采用TO-220封装,三个引出端分别是门
44、极G、阳极A、阴极K。S3900MF的主要参数如下:断态重复峰值电压VDRM:750V通态平均电流IT(AV):5A最大通态电压VT:3V(IT=30A)最大反向导通电压VTR:0.8V最大门极触发电压VGT:4V最大门极触发电流IGT:40mA关断时间toff:2.4s通态电压临界上升率du/dt:120V/s通态浪涌电流ITSM:80A利用万用表和兆欧表可以检查逆导晶闸管的好坏。测试内容主要分三项:1检查逆导性选择万用表R1档,黑表笔接K极,红表笔接A极(参见图3(a)),电阻值应为510。若阻值为零,证明内部二极管短路;电阻为无穷大,说明二极管开路。2测量正向直流转折电压V(BO)按照(
45、b)图接好电路,再按额定转速摇兆欧表,使RCT正向击穿,由直流电压表上读出V(BO)值。3检查触发能力实例:使用500型万用表和ZC25-3型兆欧表测量一只S3900MF型逆导晶闸管。依次选择R1k、R100、R10和R1档测量A-K极间反向电阻,同时用读取电压法求出出内部二极管的反向导通电压VTR(实际是二极管正向电压VF)。再用兆欧表和万用表500VDC档测得V(BO)值。全部数据整理成表1。由此证明被测RCT质量良好。注意事项:(1)S3900MF的VTR0.8V,宜选R1档测量。(2)若再用读取电流法求出ITR值,还可以绘制反向伏安特性。 UID139222帖子7045精华23威望43623 芯币8513 枚阅读权限100在线时间905 小时注册时间2009-7-10最后登录2010-5-6查看详细资料TOP 12楼 大 中 小 发表于 2009-12-10 21:27 只看该作者 硅双向开关(SBS)