《传感器及检测技术实验报告.docx》由会员分享,可在线阅读,更多相关《传感器及检测技术实验报告.docx(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、准考证号:100214101370 姓名:倪帅彪 院校:河南科技大学专业名称:080302机械制造及自动化(独立本科段)传感器与检测技术实验报告实验一常用传感器(电感式、电阻式或电容式)静态性能测试一、实验目的:1进一步认识电阻式、电感式、电容式传感器的工作原理、基本结构、性能与应用。2以差动变压器式位移传感器(属于互感型电感传感器)的测量电路为典型,了解调幅-调解电路的基本构成与特点。3掌握测试差动变压器式位移传感器变换特性的基本方法,比较电感式传感器的交流输出特性和解调后的直流输出特性。4. 了解差动变压器式位移传感器与电路的灵敏度、线性度数据处理的方法。二、实验原理与装置1实验装置与仪器
2、(1)WJ-1型小位移特性实验仪一套。差动变压器式位移传感器实验装置一台。电感检测线路板一台。频率4005KHz可调,电压15V可调,电感实验激励振荡源一台。(2)数字电压表一只。(3)双踪电子示波器一台。2实验原理 实验装置的龙门框架上固定精密螺旋测微仪,精度达0.01mm。框架下固定差动变压器组件。调螺旋测微仪,可使其端部联接的差动变压器的可动铁心发生位移,从而使互感发生变化。铁心的位移量由螺旋千分尺读出。电感量的变化通过检测线路(见图1-1)转化为电压的变化输出。由于差动变压器式传感器直接输出的信号为调幅波,虽然含有位移量大小和方向的信息,但不易读出。所以应经过相敏检波电路(由四个二极管
3、组成的环形相敏解调器)处理后,方可输出与输入位移信号波形相同的电压波形。变压器的激磁电源由电感振荡源提供。数字电压表用于测量输出电压。示波器用于观察传感器的交流输出信号(调幅波)与输入位移量大小、方向的对应关系。a)b)图1-1 差动变压器式传感器及其测量电路a)差动变压器原理 b)测量电路三、实验内容1测量差动变压器式位移传感器的直流输出特性,即静态特性曲线。计算灵敏度与线性度。2用双踪示波器观察传感器的交流输出信号,即调幅波与位移大小、方向的对应关系和与激磁电源频率、电压大小的关系。四、实验步骤1在实验装置框架下,固定差动变压器组件,螺旋测微仪端部固定差动变压器铁心,面板上固定电感检测线路
4、板。2在转换机箱上插入电感实验用激励振荡源插件。图1-1B为电感检测线路板,振荡源的输出与检测线路板上的孔7联接。3差动变压器的1、4、5、8(图1-1A)与线路板上的1、2、3、4联接。差动变压器的9、10与线路板的5、6联接。4用双踪示波器观察交流输出波形时,检测线路板上的1与9、3与10联接,从孔16输出的调幅波接入双踪示波器,以观察输出波形。双踪示波器的另一输入口可接入差动变压器的激励电厂作为参考信号,以观察调幅波的相位与铁心位移方向的对应关系。5做直流输出特性实验时,将检测线路板的1与14、3、与13、9与15、10与12联接,从孔17输出直流电压(mV),接入检测仪器指示单元的插入
5、插孔usr。若用数字表指示输出时,可将插孔17与数字表联接。6打开转换器电源预热15分钟左右,将指示单元测量选择开关拨向V处,电感振荡源频率调节到1KHz左右,输出电压为5V。再将测量选择开关拨向A处,准备测量。7调节螺旋测微仪到中间位置约12(mm)处,再以此为零点。再调节龙门框架上下滚花螺母,使铁心调节到差动变压器的中间位置,毫安表指示为零;否则,调节零电位器使之为零。之后,调节螺旋测微器向上或向下位移10(mm),毫安表指示应为10(mA);否则,调节调满电位器。8以螺旋测微仪12(mm)刻度为零点,在10(mm)范围内每变化2毫米为一点,逐点测量差动变压器的输出,并重复三次,记入表1-
6、1。表1-1 差动变压器位移传感器的输出特性数据距离 项目铁心位移(mm)-10-8-6-4-20246810输出(mV)第一次第二次第三次平均值Y1拟合方程理论值Y1非线性差值L= Y1-Y1非线性LN9取三次各测量点的平均值,以铁心位移为横坐标,输出值为纵坐标,绘图。10用平均法求线性拟合直线,并以此为理论值,求该差动变压器的非线性。五、实验报告要求1绘出实验系统框图,并加以说明。2用平均法确定由实验数据所得平均值的拟合方程,计算传感器的非线性度,并填入表1-1中。3根据实验数据绘制传感器的输出电压yi与铁心位移x的对应关系曲线,即输出特性曲线。4根据双踪示波器的波形(调幅波),定性绘制传
7、感器输出交流波形与输入位移大小、方向的对应关系图。5思考题(1)差动电感式传感器与差动变压器在结构、原理上有何异同?.差动电感是基于电桥工作原理;差动变压器直接输出信号。(2) 对电感式传感器的激励振荡源应有哪些要求?1、检测距离的衰减性;2、现场抗干扰能力;3、安装方面;4、稳定运行的保障。实验二滤波器的频率特性实验一、实验目的1.了解无源和有源滤波器的类型、电路构成、工作原理、特性和应用,比较其性能的不同点。2.通过对滤波器频率响应特性的测试,掌握对元件或系统做频率特性测试的方法。二、实验原理、装置和仪器实验装置及仪器见图2-1,其中滤波器实验板上可根据实验内容的不同接插组成不同滤波器。信
8、号发生器输出幅值恒定、频率可调的正弦波电压作为滤波器的输入信号ui,由双踪示波器监测其幅值。在每一给定频率下,从双踪示波器读出输出电压u0及u0与ui的相位差 。直流稳压电源为有源滤波器的运算放大器提供12V电源。三、实验内容及步骤图2-1滤波器频率特性测试系统框图1实验内容(1)RC无源一阶低通滤波器的频率特性测试 RC无源低通滤波器如图2-2A所示。如果负载电阻RL=,其幅频特性 和相频特性 为式中 此为一阶低通滤波器,其选择性较差,截止频率 。无源滤波器的优点是结构简单,缺点是带负载能力差。a) b) c)图2-1 滤波器电路图a) RC无源低通 b) 有源低通RC c) 多路有源反馈带
9、通(2)RC有源一阶低通滤波器频率特性测试 RC有源一阶低通滤波器如图2-2B所示,其幅频特性和相频特性为式中 由式可见,RC有源一阶低通滤波器的频率特性和RC无源一阶低通滤波器相似,但增益不同,所以带负载能力强。(3)多路负反馈有源带通滤波器频率特性测试 电路原理如图2-2C所示。其幅频特性和相频特性为式中 : 中心频率 :品质因素 :可取参数为R1=7.5(kW),R2=20(kW),R3=16(kW),C1=C2=C=0.01mF2.实验步骤三个实验对象虽然不同,但均是测试滤波器的幅频、相频特性。因而,实验方法及步骤相同。其实验结果可填入表2-1中。(1) 按图S-3A选择R、C元件,测
10、试参数R=1(kW),C=0.02mF,RL=1(kW),计算截止频率。在滤波器实验板上,按图S-3A接线,插入R、C元件,但先不接入RL(即RL=)(2) 按图S-2联接测试系统,由信号发生器输出幅值恒定的正弦信号(约1(V),用双踪示波器监测波形,不断改变信号频率f,使,0.1,0.2,并从示波器上读出滤波器输出正弦电压的幅值,记入表2-1中。将信号源电压及滤波器输出电压同时送入双踪示波器(或其它测试相位差的仪器),观察并计算相位差,记入表S-2中。表2-1f(Hz)0.010.10.20.30.40.50.60.70.80.91.02.03.04.05.0(4)在滤波器的输出端并联接入负
11、载RL=1(kW),重复上述实验,记录有关数据。(5)按图2-2B选择运算放大器,取R=R1=1(kW),C=0.027mF,(kW),RL=1(kW),计算截止频率及增益K,在滤波器实验板上按图2-2B接线,并插入相应元件。重复(2),(3),(4)操作,记录数据,填入表2-1中。(6)按图2-2C选择运算放大器(如)、阻容元件值,在实验板上联接。计算中心频率及品质因数Q,此时,。(7)按(2),(3),(4)顺序测试、记录数据,填入表2-1中。四、实验报告要求(除一般要求外)1 根据实验数据表绘制RC无源一阶低通、RC有源一阶低通滤波器的幅频特性。从中找出实际曲线上的截止频率,与理论计算值
12、相比较,并分析误差。2 根据实验数据表绘制多路负反馈有源带通滤波器的幅频特性、相频特性,与理论计算值相比较,并分析误差。3 思考题1滤波器的阶数与其性能有什么关系?阶数越高,滤波反应越灵敏,延迟小 但不是越高越好2阶数对滤波器的那些性能有影响?阶数,通俗的理解,就是谐波过滤的次数,阶数越高,谐波滤除率就会越高,但是,成本增加也会越厉害,所以,不能一味的追求阶数,还要考虑成本要求实验三 压力传感器的静态标定一、实验目的1通过实验,掌握传感器的静态标定方法及标定数据的处理方法。2学会根据静态标定曲线,计算传感器的静态性能指标。3掌握传感器静态标定系统的组成。4进一步认识应变式力传感器的工作原理、结
13、构及相匹配的测量电路。5了解动态电阻应变仪的使用方法。二、实验装置及仪器1.应变电阻式压力传感器一台PBR-2型,0.175(MPa)。2活塞式压力计一台 量程0110(MPa)。3标准压力表一只 量程0110(MPa),精度05级以上。4Y6D-3A型动态应变仪。5数字万用表(电压表)。6温度计 050()。三、实验原理1静态标定系统静态塞标定是给传感器输入已知不变的标准非电量(本实验为标准压力),测出其输出,给定标定曲线、标定方程,从而计算灵敏度、线性度、滞差、重复性等传感器的静态指标。对传感器进行静态标定时,首先,要建立静态标定系统。图3-1为压力传感器静态标定系统的框图,其系统的关键是
14、标准压力发生器及标准测试系统,即图中的活塞式压力计及标准压力表。活塞式压力计人为地对被标的压力传感器施加标准压力,其值由弹簧管式标准压力表显示。应变电阻式压力传感器将压力转换为电桥桥臂的电阻变化,再经动态应变仪处理、放大后,输出的电压由数字万用表读出。活塞式压力计每产生一个标准压力值,系统相应输出电压值。在传感器量程范围内,至少要标定510个点。通过由零上升到最大量程值,再由最大值逐渐下降到零的工作循环,可得到一条标定曲线。图3-1 压力传感器的静态标定系统图活塞式压力计是一种较精密的测量仪器,工作时应水平放在无振动的工作台上。由于介质(实验中为液压传动油)的粘度与温度有关,实验应在环境温度,
15、t=203()、相对湿度不大于80的条件下工作。2PBR-2型应变电阻式压力传感器及测量电桥图3-2所示为PBR-2型应变电阻式压力传感器的结构原理图。活塞式压力计产生的标准压力作用在感压膜片4上,膜片变形推压感测薄壁圆筒 (或称应变管)3,在壁筒沿轴线方向贴一应变片R1,沿圆周方向贴一相同阻值的应变片R2。受压时,轴向压缩,横向膨胀,而使R1阻值降低、R2阻值增加。如此布片不仅提高了灵敏度,也实现了温度补偿的功能。测量电桥如图3-3所示。R1、R2为电桥的两相邻臂,另外两臂是阻值与Rl、R2相同的固定电阻R3、R4由动态电阻应变仪的电桥盒提供。图3-2 PBR-2 型压力传感器1-引线 2-
16、应变片 3-应变管 4-感压膜片图3-3 测量电桥及应变仪框图1-电桥盒 2-调幅波放大器 3-相敏检波器 4-滤波器5-振荡器 6-缓冲器(放大器) 7-电源3动态电阻应变仪的工作原理该仪器是与应变式传感器配套的测量仪器,主要由测量电桥、交流放大器、相敏检波器、滤波器和电源供给器组成。交流测量电桥的电源由振荡器供给10(kHz)的正弦波电压。应变仪将电桥输出的调幅波经过交流放大一相敏检波一低通滤波后输出电压(或电流),由数字电压表显示电压值。在应变仪的主机中装有电桥的微调平衡装置(包括电阻、电容微调)和电标定装置。当活塞压力计给出的标准压力为零时,理论上电桥平衡,无信号输出。但实际上由于各种
17、原因(如桥臂电阻阻值误差、放大器零漂等),可能有信号输出,此时应微调应变仪的平衡装置,使输出信号为零。四、实验步骤1将被标定的压力传感器和标准压力表安装在活塞式压力计上。2给活塞式压力计充油、排气,并排除标定压力下的漏油现象。3通过传输电缆将传感器的R1、R2联接到动态应变仪电桥上。应变仪由自配的电源箱供电。将应变仪电压输出口接到数字万用表上。 4检查接线无误后即可接通应变仪电源,预热1020(min)过机箱上配置的电阻调零、电容调零,调节应变仪零点。5旋转活塞式压力计手柄,给出标准压力。由传感器的零负荷到满量程逐级给传感器加压,每级为20满量程;再逐级按20满量程降压直至零。同时,从数字电压
18、表记录各加压、降压点的传感器输出值(指应变仪输出的电压值),:应包括零压力输出值。实验时要特别注意:加压时,不得超过预定值再降下来;降压时,不得超过预定值再向上加。 6.步骤5重复三次,共加压、降压三个循环,所有输出电压值填入表3-1中。记录实验环境的温度和相对湿度;表3-1 标定数据与处理数据表 输入(MPa)输出(mV)051015201正行程反行程2正行程反行程3正行程反行程正行程输出平均值反行程输出平均值总输出平均值7实验完毕,经指导教师审阅实验记录后,方可结束实验。五、实验报告要求 1根据上述三个加压、降压所得标定数据,计算正行程输出平均值、反行程输出平均值及总输出平均值,计算结果填入表3-1中。 2用端值法求拟合直线,并求线性度、灵敏度、重复性及滞差。 3回答下列问题 (1)从传感器的静态特性和动态特性考虑,详述如何选用传感器? 考虑传感器的静态特性的主要指标,选用线性度大、迟滞小、稳定性高、抗干扰稳定性高的传感器。考虑动态特性,所选的传感器应能很好的追随输入量的快速变化,即具有很短的暂态响应时间或者应具有很宽的频率响应特性。 (2) 为什么测量电桥具有温度补偿作用? 因为对应检测桥臂的旁支桥臂上有温度补偿的线圈,也就是温度补偿元件,使 检测的温度被补偿到标准的0。