《江苏省高考物理选修35知识点梳理.docx》由会员分享,可在线阅读,更多相关《江苏省高考物理选修35知识点梳理.docx(27页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、选修3-5 动量 动量守恒定律1、冲量冲量可以从两个侧面的定义或说明。作用在物体上的力和力的作用时间的乘积, 叫做该力对这物体的冲量。冲量是力对时间的累积效应。力对物体的冲量, 使物体的动量发生变更; 而且冲量等于物体动量的变更。冲量的表达式I = Ft。单位是牛顿秒冲量是矢量, 其大小为力和作用时间的乘积, 其方向沿力的作用方向。假如物体在时间t内受到几个恒力的作用, 则合力的冲量等于各力冲量的矢量和, 其合成规律遵守平行四边形法则。2、动量可以从两个侧面对动量进展定义或说明。物体的质量跟其速度的乘积, 叫做物体的动量。动量是物体机械运动的一种量度。动量的表达式P = mv。单位是千克米 /
2、 秒。动量是矢量, 其方向就是瞬时速度的方向。因为速度是相对的, 所以动量也是相对的, 我们啊3、动量定理物体动量的增量, 等于相应时间间隔力, 物体所受合外力的冲量。表达式为I = 或。运用动量定理要留意动量定理是矢量式。合外力的冲量与动量变更方向一样, 合外力的冲量方向与初末动量方向无干脆联络。合外力可以是恒力, 也可以是变力。在合外力为变力时, F可以视为在时间间隔t内的平均作用力。动量定理不仅适用于单个物体, 而且可以推广到物体系。4、动量守恒定律当系统不受外力作用或所受合外力为零, 则系统的总动量守恒。动量守恒定律依据实际状况有多种表达式, 一般常用等号左右分别表示系统作用前后的总动
3、量。运用动量守恒定律要留意以下几个问题: 动量守恒定律一般是针对物体系的, 对单个物体谈动量守恒没有意义。对于某些特定的问题, 例如碰撞、爆炸等, 系统在一个特别短的时间内, 系统内部各物体互相作用力, 远比它们所受到外界作用力大, 就可以把这些物体看作一个所受合外力为零的系统处理, 在这一短短暂间内遵循动量守恒定律。计算动量时要涉及速度, 这时一个物体系内各物体的速度必需是相对于同一惯性参照系的, 一般取地面为参照物。动量是矢量, 因此“系统总动量”是指系统中全部物体动量的矢量和, 而不是代数和。动量守恒定律也可以应用于分动量守恒的状况。有时虽然系统所受合外力不等于零, 但只要在某一方面上的
4、合外力重量为零, 那么在这个方向上系统总动量的重量是守恒的。动量守恒定律有广泛的应用范围。只要系统不受外力或所受的合外力为零, 那么系统内部各物体的互相作用, 不管是万有引力、弹力、摩擦力, 还是电力、磁力, 动量守恒定律都适用。系统内部各物体互相作用时, 不管具有一样或相反的运动方向; 在互相作用时不管是否干脆接触; 在互相作用后不管是粘在一起, 还是分裂成碎块, 动量守恒定律也都适用。5、动量与动能、冲量与功、动量定理与动能定理、动量守恒定律与机械能守恒定律的比拟。动量与动能的比拟:动量是矢量, 动能是标量。动量是用来描绘机械运动互相转移的物理量而动能往往用来描绘机械运动与其他运动(比方热
5、、光、电等)互相转化的物理量。比方完全非弹性碰撞过程探讨机械运动转移速度的变更可以用动量守恒, 若要探讨碰撞过程变更成内能的机械能则要用动能为损失去计算了。所以动量和动能是从不同侧面反映和描绘机械运动的物理量。冲量与功的比拟, 冲量描绘的是力的时间累积效应, 功是力的空间累积效应。冲量是矢量, 功是标量。冲量过程一般伴随着动量的变更过程, 而做功过程一般伴随着动能的变更过程。至于原委从哪一角度来探讨, 要依据实际须要来确定。动量定理与动能定理的比拟, 两个定理是冲量与动量变更, 功与动能变更之间关系的详细表述。前一个是矢量式, 后一个是标量式。在一个物体系内, 作用力与反作用力冲量总是等值反向
6、, 并在一条直线上, 内力冲量的矢量和等于零, 但内力功的代数和不肯定为零, 在子弹打木块的问题中一对滑动摩擦力做功的代数和等于系统内能的增量。动量守恒定律与机械能守恒定律比拟, 前者是矢量式, 有广泛的适用范围, 而后者是标量式其适用范围则要窄得多。这些区分在运用中肯定要留意。6、碰撞两个物体互相作用时间极短, 作用力又很大, 其他作用相对很小, 运动状态发生显著化的现象叫做碰撞。以物体间碰撞形式区分, 可以分为“对心碰撞”(正碰), 而物体碰前速度沿它们质心的连线; “非对心碰撞”中学阶段不探讨。以物体碰撞前后两物体总动能是否变更区分, 可以分为:“弹性碰撞”。碰撞前后物体系总动能守恒;
7、“非弹性碰撞”, 完全非弹性碰撞是非弹性碰撞的特例, 这种碰撞, 物体在相碰后粘合在一起, 动能损失最大。各类碰撞都遵守动量守恒定律和能量守恒定律, 不过在非弹性碰撞中, 有一局部动能转变成了其他形式能量, 因此动能不守恒了。验证动量守恒定律(试验、探究)【试验目的】探讨在弹性碰撞的过程中,互相作用的物体系统动量守恒【试验原理】图-1利用图-1的装置验证碰撞中的动量守恒,让一个质量较大的球从斜槽上滚下来,跟放在斜槽末端上的另一个质量较小的球发生碰撞,两球均做平抛运动由于下落高度一样,从而导致飞行时间相等,我们用它们平抛射程的大小代替其速度小球的质量可以测出,速度也可间接地知道,如满意动量守恒式
8、m1v1=m1v1+m2v2,则可验证动量守恒定律进一步分析可以知道,假如一个质量为m1,速度为v1的球与另一个质量为m2,速度为v2的球相碰撞,碰撞后两球的速度分别为v1和v2,则由动量守恒定律有:m1v1+m2v2=m1v1+m2v2【试验器材】图-2两个小球(大小相等,质量不等);斜槽;重锤线;白纸;复写纸;天平;刻度尺;圆规【试验步骤】1.用天平分别称出两个小球的质量m1和m2;2.按图-2安装好斜槽,留意使其末端切线程度,并在地面适当的位置放上白纸和复写纸,并在白纸上登记重锤线所指的位置O点.3.首先在不放被碰小球的前提下,让入射小球从斜槽上同一位置从静止滚下,重复数次,便可在复写纸
9、上打出多个点,用圆规作出尽可能小的圆,将这些点包括在圆内,则圆心就是不发生碰撞时入射小球的平均位置P点(图-40);4.将被碰小球放在斜槽末端上,使入射小球与被碰小球能发生正碰;5.让入射小球由某肯定高度从静止开场滚下,重复数次,使两球相碰,依据步骤(3)的方法求出入球落地点的平均位置M和被碰小球落地点的平均位置N;6.过ON在纸上做一条直线,测出OM、OP、ON的长度;7.将数据代入下列公式,验证公式两边数值是否相等(在试验误差允许的范围内):m1OP=m1OM+m2ON【留意事项】1“程度”和“正碰”是操作中应尽量予以满意的前提条件2测定两球速度的方法,是以它们做平抛运动的程度位移代表相应
10、的速度 3斜槽末端必需程度,检验方法是将小球放在平轨道上任何位置,看其能否都保持静止状态4入射球的质量应大于被碰球的质量5入射球每次都必需从斜槽上同一位置由静止开场滚下方法是在斜槽上的适当高度处固定一档板,小球靠着档板后放手释放小球6试验过程中,试验桌、斜槽、记录的白纸的位置要始终保持不变7m1OP=m1OM+m2ON式中一样的量取一样的单位即可【误差分析】误差来源于试验操作中,两个小球没有到达程度正碰,一是斜槽不够程度,二是两球球心不在同一程度面上,给试验带来误差每次静止释放入射小球的释放点越高,两球相碰时作用力就越大,动量守恒的误差就越小应进展屡次碰撞,落点取平均位置来确定,以减小偶尔误差
11、下列一些缘由可能使试验产生误差:1若两球不能正碰,则误差较大;2斜槽末端若不程度,则得不到精确的平抛运动而造成误差;3O、P、M、N各点定位不精确带来了误差;4测量和作图有偏向;5仪器和试验操作的重复性不好,使得每次做试验时不是统一标准【典型例题】图-3图-4例1(2000年全国高考)某同学用如图-3所示装置通过半径一样的A、B两球的碰撞来验证动量守恒定律图中PQ是斜槽,QR为程度槽试验时先使A球从斜槽上某一固定位置G由静止开场滚下,落到位于程度地面的记录纸上,留下痕迹重复上述操作10次,得到10个落点痕迹,再把B球放在程度槽上靠近槽末端的地方,让A球仍从位置G由静止开场滚下,和B球碰撞后,A
12、、B球分别在记录纸上留下各自的落点痕迹重复这种操作10次如图-41中O点是程度槽末端R在记录纸上的垂直投影点B球落点痕迹如图-41所示,其中米尺程度放置,且平行于G、R、O所在的平面,米尺的零点与O点对齐(1)碰撞后B球的程度射程应取为_cm(2)在以下选项中,哪些是本次试验必需进展的测量?答:_(填选项号) A. 程度槽上未放B球时,测量A球落点位置到O点的间隔 B. A球与B球碰撞后,测量A球落点位置到O点的间隔 C. 测量A球或B球的直径 D. 测量A球和B球的质量(或两球质量之比) E. 测量G点相对于程度槽面的高度解析(1)如图-4中画出了B球的10个落点位置,试验中应取平均位置方法
13、是:用最小的圆将全部点圈在里面,圆心位置即为落点平均位置,找准平均位置,读数时应在刻度尺的最小刻度后面再估读一位答案为64.7cm(从64.2cm到65.2cm的范围内都正确)(2)本试验的装置将教材上的试验装置作了微小变更,把放被碰小球的支座去掉,而把被碰小球放在靠近槽末端的的地方,使得被碰小球B和入射小球A都从O点开场做平抛运动,且两球平抛时间一样,以平抛时间为时间单位,则平抛的程度间隔 在数值上等于平抛初速度设A未碰B,平抛程度位移为sA;A、B相碰后,A、B两球的程度位移分别为sA、sB,A、B质量分别为mA、mB,则碰前A的动量可写成mAsA,碰后A、B总动量为mAsA+mBsB,要
14、验证动量是否守恒,即验证以上两动量是否相等,所以该试验应测量的物理量有:mA、mB、sA、sA、sB该题答案是ABD答案 64.7cm ABD评注 本题变更试验条件,在新的情景中寻求需测量的物理量,留意发觉问题的实力和创新实力的考察例2试验中的小球必需运用光滑坚硬的小球,这是为什么?解析 这是为了两球在碰撞时尽量减小能量损失因为在碰撞时若为非志向的弹性碰撞,则内力之功一局部要变为内能由于采纳了光滑的钢球,这个影响不太大,误差约在3以内,倘如球不够坚硬,或其外表粗糙,影响就较严峻了评注 这项留意事项是做好这个试验的一个很重要的措施图-5例3某同学设计了一个用打点计时器验证动量守恒定律的试验,在小
15、车A的前端黏有橡皮泥,设法使小车A做匀速直线运动,然后与原来静止的小车B相碰并黏在一起,接着做匀速运动,设计如图-5所示:图-6在小车A的后面连着纸带,电磁打点计时器的频率为50Hz,长木板下垫着小木片用以平衡摩擦力(1)若已得到打点纸带如图-6所示,并测得各计数点间的间隔 在图上标出A为运动起始的点,则应选_段来计算A碰前的速度,应选_段来计算A和B碰后的共同速度(2)已测得小车A的质量mA=0.4kg,小车B的质量mB=0.20kg,则由以上结果可得碰前总动量=_kgm/s,碰后总动量=_kgm/s解析 因为小车A与B碰撞前、后都做匀速运动,且碰后A与B粘合在一起,其共同速度比A原来的速度
16、小所以应选点迹分布匀称且点距较大的BC段计算A的碰前速度,点间距小的DE段计算A和B碰后的共同速度由图可知,碰前A的速度和碰后AB的共同速度分别为故碰撞前后的总动量分别为:P=mAvA=0.40 1.05kg m/s=0.42kg m/sP=(mA+mB)vA=(0.40+0.20)0.695kgm/s=0.417kgm/s评注 本题说明了另外一种验证动量守恒定律的例子,值得留意其方法,课本上还列举了用气垫导轨做试验验证动量守恒的实例,有条件可以做一做弹性碰撞和非弹性碰撞 反冲运动1、 碰撞:互相运动的物体相遇,在极短的时间内,通过互相作用,运动状态发生显著变更的过程叫碰撞。以物体间碰撞形式分
17、类以物体间碰撞前后两物体的总动能是否发生变更分类碰撞的种类正碰斜碰弹性碰撞非弹性碰撞完全非弹性碰撞2、(1)完全弹性碰撞:在弹性力的作用下,系统内只发朝气械能的转移,无机械能的损失,称完全弹性碰撞。(2)非弹性碰撞:非弹性碰撞:在非弹性力的作用下,局部机械能转化为物体的内能,机械能有了损失,称非弹性碰撞。(3)完全非弹性碰撞:在完全非弹性力的作用下,机械能损失最大(转化为内能等),称完全非弹性碰撞。碰撞物体粘合在一起,具有一样的速度。例题:在光滑的程度面上,有质量分别为m1、m2的钢球沿一条直线同向运动, m1、 m2的速度分别是v1、v2,(v1、v2)m1与m2发生弹性正碰。求碰后两钢球的
18、速度。则由动量守恒定律和动能守恒可以列出以下方程利用(3)式和(4)式,可探讨以下两种特别状况:A假如两物体质量相等,即m1=m2,则可得 B假如一个物体是静止的,例如质量为m2的物体在碰撞前是静止的,即v2=0,则可得这里又可有以下几种状况:ab质量较大的物体向前运动。cd以原速率反弹回来,而质量很大的物体几乎不动。例如橡皮球与墙壁的碰撞。e速度几乎不变,而质量很小的物体获得的速度是原来运动物体速度的2倍,这是原来静止的物体通过碰撞可以获得的最大速度。3、反冲运动:某个物体向某一方向高速喷射出大量的液体,气体或彈弹射出一个小物体,从而使物体本身获得一反向速度的现象,叫反冲运动在反冲现象中,系
19、统所做的合外力一般不为零;但是反冲运动中假如属于内力远大于外力的状况,可以认为反冲运动中系统动量守恒。量子论的建立 黑体和黑体辐射一、量子论1.创立标记:1900年普朗克在德国的物理年刊上发表论正常光谱能量分布定律的论文,标记着量子论的诞生。2.量子论的主要内容:普朗克认为物质的辐射能量并不是无限可分的,其最小的、不行分的能量单元即“能量子”或称“量子”,也就是说组成能量的单元是量子。物质的辐射能量不是连续的,而是以量子的整数倍跳动式变更的。3.量子论的开展1905年,爱因斯坦奖量子概念推广到光的传播中,提出了光量子论。1913年,英国物理学家玻尔把量子概念推广到原子内部的能量状态,提出了一种
20、量子化的原子构造模型,丰富了量子论。到1925年左右,量子力学最终建立。4.量子论的意义与量子论等一起,引起物理学的一场重大革命,并促进了现代科学技术的打破性开展。量子论的革命性观念揭开了微观世界的奇妙,深入变更了人们对整个物质世界的相识。量子论胜利的提醒了诸多物质现象,如光量子论提醒了光电效应量子概念是一个重要基石,现代物理学中的很多领域都是从量子概念根底上衍生出来的。量子论的形成标记着人类对客观规律的相识,开场从宏观世界深化到微观世界;同时,在量子论的根底上开展起来的量子论学,极大地促进了原子物理、固体物理和原子核物理等科学的开展。二、黑体和黑体辐射1热辐射现象任何物体在任何温度下都要放射
21、各种波长的电磁波,并且其辐射能量的大小及辐射能量按波长的分布都与温度有关。这种由于物质中的分子、原子受到热激发而放射电磁波的现象称为热辐射。.物体在任何温度下都会辐射能量。.物体既会辐射能量,也会汲取能量。物体在某个频率范围内放射电磁波实力越大,则它汲取该频率范围内电磁波实力也越大。辐射和汲取的能量恰相等时称为热平衡。此时温度恒定不变。试验说明:物体辐射能多少确定于物体的温度(T)、辐射的波长、时间的长短和放射的面积。2.黑体物体具有向四周辐射能量的本事,又有汲取外界辐射来的能量的本事。黑体是指在任何温度下,全部汲取任何波长的辐射的物体。3试验规律:1)随着温度的上升,黑体的辐射强度都有增加;
22、2)随着温度的上升,辐射强度的极大值向波长较短方向挪动。光电效应 光子说 光电效应方程1、光电效应(1)光电效应在光(包括不行见光)的照耀下,从物体放射出电子的现象称为光电效应。(2)光电效应的试验规律:装置:任何一种金属都有一个极限频率,入射光的频率必需大于这个极限频率才能发生光电效应,低于极限频率的光不能发生光电效应。光电子的最大初动能与入射光的强度无关,光随入射光频率的增大而增大。大于极限频率的光照耀金属时,光电流强度(反映单位时间放射出的光电子数的多少),与入射光强度成正比。 金属受到光照,光电子的放射一般不超过109秒。2、波动说在光电效应上遇到的困难波动说认为:光的能量即光的强度是
23、由光波的振幅确定的与光的频率无关。所以波动说对说明上述试验规律中的条都遇到困难3、光子说(1)量子论:1900年德国物理学家普郎克提出:电磁波的放射和汲取是不连续的,而是一份一份的,每一份电磁波的能量E=hv(2)光子论:1905年受因斯坦提出:空间传播的光也是不连续的,而是一份一份的,每一份称为一个光子,光子具有的能量与光的频率成正比。即:E=hv 其中h为普郎克恒量h=6.631034JS4、光子论对光电效应的说明金属中的自由电子,获得光子后其动能增大,当功能大于脱出功时,电子即可脱离金属外表,入射光的频率越大,光子能量越大,电子获得的能量才能越大,飞出时最大初功能也越大。5光电效应方程
24、当Vm=0 时,n为极限频率n0 , n0=W0/h104康普顿效应康普顿效应是光子和电子作弹性碰撞的结果,详细说明如下: 1. 若光子和外层电子相碰撞,光子有一局部能量传给电子,散射光子的能量削减,于是散射光的波长大于入射光的波长。 2. 若光子和束缚很紧的内层电子相碰撞,光子将与整个原子交换能量,由于光子质量远小于原子质量,依据碰撞理论, 碰撞前后光子能量几乎不变,波长不变。3. 因为碰撞中交换的能量和碰撞的角度有关,所以波长变更和散射角有关。康普顿效应说明光具有粒子性。光的波粒二象性 物质波 概率波 不确定性关系光既表现出波动性,又表现出粒子性大量光子表现出的波动性强,少量光子表现出的粒
25、子性强;频率高的光子表现出的粒子性强,频率低的光子表现出的波动性强实物粒子也具有波动性 这种波称为德布罗意波,也叫物质波。从光子的概念上看,光波是一种概率波不确定性关系:原子核式构造模型1、电子的发觉和汤姆生的原子模型:(1)电子的发觉:1897年英国物理学家汤姆生,对阴极射线进展了一系列的探讨,从而发觉了电子。电子的发觉说明:原子存在精细构造,从而打破了原子不行再分的观念。(2)汤姆生的原子模型:1903年汤姆生设想原子是一个带电小球,它的正电荷匀称分布在整个球体内,而带负电的电子镶嵌在正电荷中。2、粒子散射试验和原子核构造模型(1)粒子散射试验:1909年,卢瑟福及助手盖革手吗斯顿完成 装
26、置: 现象: a. 绝大多数粒子穿过金箔后,仍沿原来方向运动,不发生偏转。b. 有少数粒子发生较大角度的偏转 c. 有极少数粒子的偏转角超过了90度,有的几乎到达180度,即被反向弹回。(2)原子的核式构造模型:由于粒子的质量是电子质量的七千多倍,所以电子不会使粒子运动方向发生明显的变更,只有原子中的正电荷才有可能对粒子的运动产生明显的影响。假如正电荷在原子中的分布,像汤姆生模型那模匀称分布,穿过金箔的粒了所受正电荷的作用力在各方向平衡,粒了运动将不发生明显变更。散射试验现象证明,原子中正电荷不是匀称分布在原子中的。1911年,卢瑟福通过对粒子散射试验的分析计算提出原子核式构造模型:在原子中心
27、存在一个很小的核,称为原子核,原子核集中了原子全部正电荷和几乎全部的质量,带负电荷的电子在核外空间绕核旋转。原子核半径小于10-14m,原子轨道半径约10-10m。氢原子光谱氢原子是最简洁的原子,其光谱也最简洁。1885年,巴耳末对当时已知的,在可见光区的14条谱线作了分析,发觉这些谱线的波长可以用一个公式表示:除了巴耳末系,后来发觉的氢光谱在红外和紫个光区的其它谱线也都满意与巴耳末公式类似的关系式。氢原子光谱是线状谱,具有分立特征,用经典的电磁理论无法说明。原子的能级玻尔的原子模型(1)原子核式构造模型与经典电磁理论的冲突(两方面)a.电子绕核作圆周运动是加速运动,依据经典理论,加速运动的电
28、荷,要不断地向四周放射电磁波,电子的能量就要不断削减,最终电子要落到原子核上,这与原子通常是稳定的事实相冲突。b.电子绕核旋转时辐射电磁波的频率应等于电子绕核旋转的频率,随着旋转轨道的连续变小,电子辐射的电磁波的频率也应是连续变更,因此依据这种推理原子光谱应是连续光谱,这种原子光谱是线状光谱事实相冲突。(2)玻尔理论上述两个冲突说明,经典电磁理论已不适用原子系统,玻尔从光谱学成就得到启发,利用普朗克的能量量了化的概念,提了三个假设:定态假设:原子只能处于一系列不连续的能量状态中,在这些状态中原子是稳定的,电子虽然做加速运动,但并不向外在辐射能量,这些状态叫定态。跃迁假设:原子从一个定态(设能量
29、为E2)跃迁到另肯定态(设能量为E1)时,它辐射成汲取肯定频率的光子,光子的能量由这两个定态的能量差确定,即 hv=E2-E1轨道量子化假设,原子的不同能量状态,跟电子不同的运行轨道相对应。原子的能量不连续因此电子可能轨道的分布也是不连续的。即轨道半径跟电子动量mv的乘积等于h/2的整数倍,即:轨道半径跟电了动量mv的乘积等于h/的整数倍,即n为正整数,称量数数(3)玻尔的氢子模型:氢原子的能级公式和轨道半径公式:玻尔在三条假设根底上,利用经典电磁理论和牛顿力学,计算出氢原子核外电子的各条可能轨道的半径,以及电子在各条轨道上运行时原子的能量,(包括电子的动能和原子的热能。)氢原子中电子在第几条
30、可能轨道上运动时,氢原子的能量En,和电子轨道半径rn分别为:其中E1、r1为离核最近的第一条轨道(即n=1)的氢原子能量和轨道半径。即:E1=13.6ev, r1=0.5310-10m(以电子距原子核无穷远时电势能为零计算)氢原子的能级图:氢原子的各个定态的能量值,叫氢原子的能级。按能量的大小用图开像的表示出来即能级图。其中n=1的定态称为基态。n=2以上的定态,称为激发态。原子核的组成原子核1、自然放射现象(1)自然放射现象的发觉:1896年法国物理学,贝克勒耳发觉铀或铀矿石能放射出某种人眼看不见的射线。这种射线可穿透黑纸而使照相底片感光。放射性:物质能放射出上述射线的性质称放射性放射性元
31、素:具有放射性的元素称放射性元素自然放射现象:某种元素白发地放射射线的现象,叫自然放射现象自然放射现象:说明原子核存在精细构造,是可以再分的(2)放射线的成份和性质:用电场和磁场来探讨放射性元素射出的射线,在电场中轨迹,如图(1):成 份组 成性 质电离作用贯穿实力 射 线氦核组成的粒子流很 强很 弱 射 线高速电子流较 强较 强 射 线高频光子很 弱很 强2、原子核的组成(1)原子核的组成:原子核是由质子和中子组成,质子和中子统称为核子在原子核中:质子数等于电荷数 核子数等于质量数中子数等于质量数减电荷数原子核的衰变 半衰期(1)衰变:原子核由于放出某种粒子而转变成新核的变更称为衰变在原子核
32、的衰变过程中,电荷数和质量数守恒类 型衰变方程规 律 衰 变新 核 衰 变新核射线是伴随衰变放射出来的高频光子流在衰变中新核质子数多一个,而质量数不变是由于反映中有一个中子变为一个质子和一个电子,即:(2)半衰期:放射性元素的原子核的半数发生衰变所须要的时间,称该元素的半衰期。一放射性元素,测得质量为m,半衰期为T,经时间t后,剩余未衰变的放射性元素的质量为m放射性的应用与防护 放射性同位素人工放射性同位素:有些同位素具有放射性,叫做放射性同位素放射性同位素:具有一样的质子和不同中子数的原子互称同位素,放射性同位素:具有放射性的同位素叫放射性同位素。正电子的发觉:用粒子轰击铝时,发生核反响。1
33、934年,约里奥居里和伊丽芙居里 发觉经过粒子轰击的铝片中含有放射性磷反响生成物P是磷的一种同位素,自然界没有自然的,它是通过核反响生成的人工放射性同位素。发生+衰变,放出正电子与自然的放射性物质相比,人造放射性同位素:1、放射强度简洁限制2、可以制成各种须要的形态3、半衰期更短4、放射性废料简洁处理放射性同位素的应用一、利用它的射线A、由于射线贯穿本事强,可以用来射线检查金属内部有没有砂眼或裂纹,所用的设备叫射线探伤仪B、利用射线的穿透本事与物质厚度密度的关系,来检查各种产品的厚度和密封容器中液体的高度等,从而实现自动限制C、利用射线使空气电离而把空气变成导电气体,以消退化纤、纺织品上的静电
34、D、利用射线照耀植物,引起植物变异而培育良种,也可以利用它杀菌、治病等二、作为示踪原子:用于工业、农业及生物探讨等.棉花在结桃、开花的时候须要较多的磷肥,把磷肥喷在棉花叶子上,磷肥也能被汲取但是,什么时候的汲取率最高、磷在作物体内能存留多长时间、磷在作物体内的分布状况等,用通常的方法很难探讨假如用磷的放射性同位素制成肥料喷在棉花叶面上,然后每隔肯定时间用探测器测量棉株各部位的放射性强度,上面的问题就很简洁解决放射性的防护(1)在核电站的核反响堆外层用厚厚的水泥来防止放射线的外泄(2)用过的核废料要放在很厚很厚的重金属箱内,并埋在深海里(3)在生活中要有防范意识,尽可能远离放射源核力与结合能 质
35、量亏损核力:可以把核中的各种核子联络在一起的强大的力叫做核力1. 核力是四种互相作用中的强互相作用(强力)的一种表现。2. 核力是短程力。约在 10-15m量级时起作用,间隔 大于0.810-15m时为引力, 间隔 为1010-15m时核力几乎消逝,间隔 小于0.810-15m时为斥力。3. 核力具有饱和性。核子只对相邻的少数核子产生较强的引力,而不是与核内全部核子发生作用。4. 核力具有电荷无关性。对给定的相对运动状态,核力与核子电荷无关。核越来越大,有些核子间的间隔 越来越远。随着间隔 的增加,核力与电磁力都会减小,但核力减小得更快。所以,原子核大到肯定程度时,相距较远的质子间的核力缺乏以
36、平衡它们之间的库仑力,这个原子核就不稳定了。这时,假如不再成对地增加核子,而只增加中子,中子与其他核子没有库仑斥力,但有互相吸引的核力,有助于维系原子核的稳定。由于这个缘由,稳定的重原子核里,中子数要比质子数多。 结合能;由于核子间存在着强大的核力,所以核子结合成原子核或原子核分解为核子时,都伴随着宏大的能量变更 当核子结合成原子核时要放出肯定能量;原子核分解成核子时,要汲取同样的能量这个能量叫做原子核的结合能比结合能:结合能与核子数之比,称做为比结合能。也叫平均结合能。比结合能越大,表示原子核中核子结合得越坚固,原子核越稳定。质量亏损:原子分解为核子时,质量增加;核子结合成原子核时,质量削减
37、。原子核的质量小于组成原子核的核子的质量之和,叫做质量亏损爱因斯坦质能方程 E=mc2 式中c是真空中的光速,m是物体的质量,E是物体的能量。核子在结合成原子核时出现的质量亏损m,正说明它们在互相结合过程中放出了能量E=mc2常用单位: Dm用“u(原子质量单位)” 1u=1.66056610-27kg E用“uc2” 1uc2=931.5MeV (表示1u 的质量变更相当于931.5Me V的能量变更)核反响方程1.熟记一些试验事实的核反响方程式。(1)卢瑟福用粒子轰击氦核打出质子:(2)贝克勒耳和玛丽居里夫人发觉自然放射现象:衰变 衰变 (3) 查德威克用粒子轰击铍核打出中子 (4) 伊丽
38、芙居里发觉正电子 和(5) 轻核聚变 (6) 重核聚变 2.熟记一些粒子的符号 粒子()、质子()、中子()、电子()、氘核()、氚核()3.留意在核反响方程式中,质量数和电荷数是守恒的。处理有关核反响方程式的相关题目时,只要做到了以上几点,即可顺当解决问题。重核裂变 核聚变释放核能的途径裂变和聚变(1)裂变反响:裂变:重核在肯定条件下转变成两个中等质量的核的反响,叫做原子核的裂变反响。例如:链式反响:在裂变反响用产生的中子,再被其他铀核浮获使反响接着下去。链式反响的条件:裂变时平均每个核子放能约1Mev能量1kg全部裂变放出的能量相当于2500吨优质煤完全燃烧放出能量(2)聚变反响:聚变反响:轻的原子核聚合成较重的原子核的反响,称为聚变反响。例如:平均每个核子放出3Mev的能量聚变反响的条件;几百万摄氏度的高温