《小学典型应用题类型汇总复习资料.docx》由会员分享,可在线阅读,更多相关《小学典型应用题类型汇总复习资料.docx(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、小学数学典型应用题小学数学中把含有数量关系的实际问题用语言或文字叙述出来,这样所形成的题目叫做应用题。任何一道应用题都由两局部构成。第一局部是已知条件(简称条件),第二局部是所求问题(简称问题)。应用题的条件和问题,组成了应用题的构造。没有特定的解答规律的两步以上运算的应用题,叫做一般应用题。题目中有特别的数量关系,可以用特定的步骤和方法来解答的应用题,叫做典型应用题。这本资料主要探讨以下30类典型应用题: 1、归一问题 2、归总问题 3、和差问题 4、和倍问题 5、差倍问题 6、倍比问题 7、相遇问题 8、追及问题 9、植树问题10、年龄问题11、行船问题12、列车问题13、时钟问题14、盈
2、亏问题15、工程问题16、正反比例问题17、按比例安排18、百分数问题19、“牛吃草”问题20、鸡兔同笼问题21、方阵问题22、商品利润问题23、存款利率问题24、溶液浓度问题25、构图布数问题26、幻方问题27、抽屉原则问题28、公约公倍问题29、最值问题30、列方程问题 1 归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。这类应用题叫做归一问题。【数量关系】总量份数1份数量 1份数量所占份数所求几份的数量另一总量(总量份数)所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。例1、买5支铅笔要0.6元钱,买同样的铅笔16支
3、,须要多少钱?解: (1)买1支铅笔多少钱?0.650.12(元) (2)买16支铅笔须要多少钱?0.12161.92(元)列成综合算式: 0.65160.12161.92(元)例2 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷?解: (1)1台拖拉机1天耕地多少公顷? 903310(公顷) (2)5台拖拉机6天耕地多少公顷? 1056300(公顷)列成综合算式: 9033561030300(公顷)例3、 5辆汽车4次可以运送100吨钢材,假如用同样的7辆汽车运送105吨钢材,须要运几次?解: (1)1辆汽车1次能运多少吨钢材? 100545(吨) (2)7辆汽车1次能
4、运多少吨钢材? 5735(吨) (3)105吨钢材7辆汽车须要运几次? 105353(次)列成综合算式 105(100547)3(次) 2 归总问题【含义】解题时,经常先找出“总数量”,然后再依据其它条件算出所求的问题,叫归总问题。所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。【数量关系】 1份数量份数总量总量1份数量份数总量另一份数另一每份数量【解题思路和方法】 先求出总数量,再依据题意得出所求的数量。例1服装厂原来做一套衣服用布3.2米,改良裁剪方法后,每套衣服用布2.8米。原来做791套衣服的布,如今可以做多少套?解: (1)这批布总共有
5、多少米?3.27912531.2(米) (2)如今可以做多少套?2531.22.8904(套)列成综合算式 3.27912.8904(套)例2 小华每天读24页书,12天读完了红岩一书。小明每天读36页书,几天可以读完红岩?解:(1)红岩这本书总共多少页? 2412288(页) (2)小明几天可以读完红岩? 288368(天)列成综合算式 2412368(天)例3 食堂运来一批蔬菜,原安排每天吃50千克,30天渐渐消费完这批蔬菜。后来依据大家的意见,每天比原安排多吃10千克,这批蔬菜可以吃多少天?解:(1)这批蔬菜共有多少千克? 50301500(千克) (2)这批蔬菜可以吃多少天? 1500
6、(5010)25(天)列成综合算式 5030(5010)15006025(天) 3 和差问题【含义】已知两个数量的和及差,求这两个数各是多少,这类应用题叫和差问题。【数量关系】大数(和差) 2小数(和差) 2【解题思路和方法】 简洁的题可以干脆套用公式;困难的题变通后再用公式。例1 甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?解: 甲班人数(986)252(人) 乙班人数(986)246(人)例2 长方形的长和宽之和为18厘米,长比宽多2厘米,求长方形的面积。解: 长(182)210(厘米) 宽(182)28(厘米) 长方形的面积 10880(平方厘米)例3 有甲、乙、丙三袋化
7、肥,甲、乙两袋共重32千克,乙、丙两袋共重30千克,甲、丙两袋共重22千克,求三袋化肥各重多少千克。解: 甲乙两袋、乙丙两袋都含有乙,从中可以看出甲比丙多(3230)2千克,且甲是大数,丙是小数。由此可知甲袋化肥重量(222)212(千克)丙袋化肥重量(222)210(千克)乙袋化肥重量321220(千克)例4 甲乙两车原来共装苹果97筐,从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐,两车原来各装苹果多少筐? 解: “从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐”,这说明 甲车是大数,乙车是小数,甲及乙的差是(1423),甲及乙的和是97,因此甲车筐数(971423)264(筐)
8、乙车筐数976433(筐) 4 和倍问题【含义】已知两个数的和及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做和倍问题。【数量关系】 总和 (几倍1)较小的数总和 较小的数 较大的数较小的数 几倍 较大的数【解题思路和方法】 简洁的题目干脆利用公式,困难的题目变通后利用公式。例1 果园里有杏树和桃树共248棵,桃树的棵数是杏树的3倍,求杏树、桃树各多少棵?解: (1)杏树有多少棵? 248(31)62(棵) (2)桃树有多少棵? 623186(棵)例2 东西两个仓库共存粮480吨,东库存粮数是西库存粮数的1.4倍,求两库各存粮多少吨?解: (1)西库存粮数48
9、0(1.41)200(吨) (2)东库存粮数480200280(吨)例3 甲站原有车52辆,乙站原有车32辆,若每天从甲站开往乙站28辆,从乙站开往甲站24辆,几天后乙站车辆数是甲站的2倍?解: 每天从甲站开往乙站28辆,从乙站开往甲站24辆,相当于每天从甲站开往乙站(2824)辆。把几天以后甲站的车辆数当作1倍量,这时乙站的车辆数就是2倍量,两站的车辆总数(5232)就相当于(21)倍,那么,几天以后甲站的车辆数削减为 (5232)(21)28(辆)所求天数为 (5228)(2824)6(天)例4甲乙丙三数之和是170,乙比甲的2倍少4,丙比甲的3倍多6,求三数各是多少?解: 乙丙两数都及甲
10、数有干脆关系,因此把甲数作为1倍量。 因为乙比甲的2倍少4,所以给乙加上4,乙数就变成甲数的2倍; 又因为丙比甲的3倍多6,所以丙数减去6就变为甲数的3倍;这时(17046)就相当于(123)倍。那么, 甲数(17046)(123)28乙数282452丙数2836905 差倍问题【含义】 已知两个数的差及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做差倍问题。【数量关系】两个数的差(几倍1)较小的数较小的数几倍较大的数【解题思路和方法】 简洁的题目干脆利用公式,困难的题目变通后利用公式。例1果园里桃树的棵数是杏树的3倍,而且桃树比杏树多124棵。求杏树、桃树各
11、多少棵?解: (1)杏树有多少棵? 124(31)62(棵)(2)桃树有多少棵? 623186(棵)例2 爸爸比儿子大27岁,今年,爸爸的年龄是儿子年龄的4倍,求父子二人今年各是多少岁?解: (1)儿子年龄27(41)9(岁)(2)爸爸年龄9436(岁)例3 商场改革经营管理方法后,本月盈利比上月盈利的2倍还多12万元,又知本月盈利比上月盈利多30万元,求这两个月盈利各是多少万元?解: 假如把上月盈利作为1倍量,则(3012)万元就相当于上月盈利的(21)倍,因此上月盈利(3012)(21)18(万元)本月盈利183048(万元)例4 粮库有94吨小麦和138吨玉米,假如每天运出小麦和玉米各是
12、9吨,问几天后剩下的玉米是小麦的3倍?解: 由于每天运出的小麦和玉米的数量相等,所以剩下的数量差等于原来的数量差(13894)。把几天后剩下的小麦看作1倍量,则几天后剩下的玉米就是3倍量,那么,(13894)就相当于(31)倍,因此剩下的小麦数量(13894)(31)22(吨)运出的小麦数量942272(吨)运粮的天数7298(天) 6 倍比问题【含义】 有两个已知的同类量,其中一个量是另一个量的若干倍,解题时先求出这个倍数,再用倍比的方法算出要求的数,这类应用题叫做倍比问题。【数量关系】总量一个数量倍数另一个数量倍数另一总量【解题思路和方法】 先求出倍数,再用倍比关系求出要求的数。例1 10
13、0千克油菜籽可以榨油40千克,如今有油菜籽3700千克,可以榨油多少?解: (1)3700千克是100千克的多少倍? 370010037(倍)(2)可以榨油多少千克?40371480(千克)列成综合算式 40(3700100)1480(千克)例2 今年植树节这天,某小学300名师生共植树400棵,照这样计算,全县48000名师生共植树多少棵?解: (1)48000名是300名的多少倍? 48000300160(倍)(2)共植树多少棵?40016064000(棵)列成综合算式 400(48000300)64000(棵)例3 凤翔县今年苹果大丰收,田家庄一户人家4亩果园收入11111元,照这样计算
14、,全乡800亩果园共收入多少元?全县16000亩果园共收入多少元?解: (1)800亩是4亩的几倍?8004200(倍) (2)800亩收入多少元? 111112002222200(元)(3)16000亩是800亩的几倍? 1600080020(倍)(4)16000亩收入多少元? 22222002044444000(元) 7 相遇问题【含义】两个运动的物体同时由两地动身相向而行,在途中相遇。这类应用题叫做相遇问题。【数量关系】 相遇时间总路程(甲速乙速) 总路程(甲速乙速)相遇时间【解题思路和方法】 简洁的题可干脆利用公式,困难的题变通后再利用公式。例1 南京到上海的水路长392千米,同时从两
15、港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,经过几小时两船相遇? 解: 392(2821)8(小时)例2 小李和小刘在周长为400米的环形跑道上跑步,小李每秒钟跑5米,小刘每秒钟跑3米,他们从同一地点同时动身,反向而跑,那么,二人从动身到第二次相遇需多长时间?解:“第二次相遇”可以理解为二人跑了两圈,因此总路程为4002相遇时间(4002)(53)100(秒)例3甲乙二人同时从两地骑自行车相向而行,甲每小时行15千米,乙每小时行13千米,两人在距中点3千米处相遇,求两地的间隔 。解: “两人在距中点3千米处相遇”是正确理解本题题意的关键。从题中可知
16、甲骑得快,乙骑得慢,甲过了中点3千米,乙距中点3千米,就是说甲比乙多走的路程是(32)千米,因此,相遇时间(32)(1513)3(小时)两地间隔 (1513)384(千米) 8 追及问题【含义】 两个运动物体在不同地点同时动身(或者在同一地点而不是同时动身,或者在不同地点又不是同时动身)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在肯定时间之内,后面的追上前面的物体。这类应用题就叫做追及问题。【数量关系】 追刚好间追及路程(快速慢速) 追及路程(快速慢速)追刚好间【解题思路和方法】 简洁的题目干脆利用公式,困难的题目变通后利用公式。例1 好马每天走120千米,劣马每天走75
17、千米,劣马先走12天,好马几天能追上劣马?解: (1)劣马先走12天能走多少千米? 7512900(千米)(2)好马几天追上劣马? 900(12075)20(天) 列成综合算式 7512(12075)9004520(天)例2小明和小亮在200米环形跑道上跑步,小明跑一圈用40秒,他们从同一地点同时动身,同向而跑。小明第一次追上小亮时跑了500米,求小亮的速度是每秒多少米。解: 小明第一次追上小亮时比小亮多跑一圈,即200米,此时小亮跑了(500200)米,要知小亮的速度,须知追刚好间,即小明跑500米所用的时间。又知小明跑200米用40秒,则跑500米用40(500200)秒,所以小亮的速度是
18、:(500200)40(500200)3001003(米)例3 我人民解放军追击一股逃跑的敌人,敌人在下午16点开场从甲地以每小时10千米的速度逃跑,解放军在晚上22点接到吩咐,以每小时30千米的速度开场从乙地追击。已知甲乙两地相距60千米,问解放军几个小时可以追上敌人?解: 敌人逃跑时间及解放军追击时间的时差是(2216)小时,这段时间敌人逃跑的路程是10(226)千米,甲乙两地相距60千米。由此推知:追刚好间10(226)60(3010)2202011(小时)例4 一辆客车从甲站开往乙站,每小时行48千米;一辆货车同时从乙站开往甲站,每小时行40千米,两车在距两站中点16千米处相遇,求甲乙
19、两站的间隔 。解: 这道题可以由相遇问题转化为追及问题来解决。从题中可知客车落后于货车(162)千米,客车追上货车的时间就是前面所说的相遇时间,这个时间为 162(4840)4(小时)所以两站间的间隔 为(4840)4352(千米)列成综合算式 (4840)162(4840)884352(千米)例5 兄妹二人同时由家上学,哥哥每分钟走90米,妹妹每分钟走60米。哥哥到校门口时发觉遗忘带课本,马上沿原路回家去取,行至离校180米处和妹妹相遇。问他们家离学校有多远?解: 要求间隔 ,速度已知,所以关键是求出相遇时间。从题中可知,在一样时间(从动身到相遇)内哥哥比妹妹多走(1802)米,这是因为哥哥
20、比妹妹每分钟多走(9060)米,那么,二人从家出走到相遇所用时间为1802(9060)12(分钟)家离学校的间隔 为 9012180900(米)例6 孙亮准备上课前5分钟到学校,他以每小时4千米的速度从家步行去学校,当他走了1千米时,发觉手表慢了10分钟,因此马上跑步前进,到学校恰好准时上课。后来算了一下,假如孙亮从家一开场就跑步,可比原来步行早9分钟到学校。求孙亮跑步的速度。解: 手表慢了10分钟,就等于晚动身10分钟,假如按原速走下去,就要迟到(105)分钟,后段路程跑步恰准时到学校,说明后段路程跑比走少用了(105)分钟。假如从家一开场就跑步,可比步行少9分钟,由此可知,行1千米,跑步比
21、步行少用9(105)分钟。所以步行1千米所用时间为 19(105)0.25(小时)15(分钟)跑步1千米所用时间为 159(105)11(分钟)跑步速度为每小时111605.5(千米) 9 植树问题【含义】按相等的间隔 植树,在间隔 、棵距、棵数这三个量之间,已知其中的两个量,要求第三个量,这类应用题叫做植树问题。【数量关系】线形植树 棵数间隔 棵距1环形植树 棵数间隔 棵距方形植树 棵数间隔 棵距4三角形植树 棵数间隔 棵距3面积植树 棵数面积(棵距行距)【解题思路和方法】 先弄清晰植树问题的类型,然后可以利用公式。例1一条河堤136米,每隔2米栽一棵垂柳,头尾都栽,一共要栽多少棵垂柳?解:
22、 1362168169(棵)例2 一个圆形池塘周长为400米,在岸边每隔4米栽一棵白杨树,一共能栽多少棵白杨树?解: 4004100(棵)例3 一个正方形的运动场,每边长220米,每隔8米安装一个照明灯,一共可以安装多少个照明灯?解: 2204841104106(个)例4 给一个面积为96平方米的住宅铺设地板砖,所用地板砖的长和宽分别是60厘米和40厘米,问至少须要多少块地板砖?解: 96(0.60.4)960.24400(块)例5 一座大桥长500米,给桥两边的电杆上安装路灯,若每隔50米有一个电杆,每个电杆上安装2盏路灯,一共可以安装多少盏路灯?解: (1)桥的一边有多少个电杆? 5005
23、0111(个)(2)桥的两边有多少个电杆? 11222(个)(3)大桥两边可安装多少盏路灯? 22244(盏) 10 年龄问题【含义】这类问题是依据题目的内容而得名,它的主要特点是两人的年龄差不变,但是,两人年龄之间的倍数关系随着年龄的增长在发生改变。【数量关系】 年龄问题往往及和差、和倍、差倍问题有着亲密联络,尤其及差倍问题的解题思路是一样的,要紧紧抓住“年龄差不变”这个特点。【解题思路和方法】 可以利用“差倍问题”的解题思路和方法。例1 爸爸今年35岁,亮亮今年5岁,今年爸爸的年龄是亮亮的几倍?明年呢? 解: 3557(倍)(35+1)(5+1)6(倍)例2 母亲今年37岁,女儿今年7岁,
24、几年后母亲的年龄是女儿的4倍?解: (1)母亲比女儿的年龄大多少岁? 37730(岁)(2)几年后母亲的年龄是女儿的4倍? 30(41)73(年) 列成综合算式 (377)(41)73(年)例3 3年前父子的年龄和是49岁,今年父亲的年龄是儿子年龄的4倍,父子今年各多少岁?解: 今年父子的年龄和应当比3年前增加(32)岁, 今年二人的年龄和为493255(岁)把今年儿子年龄作为1倍量,则今年父子年龄和相当于(41)倍,因此,今年儿子年龄为 55(41)11(岁)今年父亲年龄为 11444(岁)例4 甲对乙说:“当我的岁数曾经是你如今的岁数时,你才4岁”。乙对甲说:“当我的岁数将来是你如今的岁数
25、时,你将61岁”。求甲乙如今的岁数各是多少?解: 这里涉及到三个年份:过去某一年、今年、将来某一年。列表分析:过去某一年今 年将来某一年 甲 岁岁 61岁 乙 4岁岁 岁表中两个“”表示同一个数,两个“”表示同一个数。 因为两个人的年龄差总相等:461,也就是4,61成等差数列,所以,61应当比4大3个年龄差,因此二人年龄差为(614)319(岁)甲今年的岁数为 611942(岁)乙今年的岁数为 421923(岁)11 行船问题【含义】 行船问题也就是及航行有关的问题。解答这类问题要弄清船速及水速,船速是船只本身航行的速度,也就是船只在静水中航行的速度;水速是水流的速度,船只顺水航行的速度(顺
26、水速度)是船速及水速之和;船只逆水航行的速度(逆水速度)是船速及水速之差。【数量关系】 (顺水速度逆水速度)2船速 (顺水速度逆水速度)2水速 顺水速船速2逆水速逆水速水速2 逆水速船速2顺水速顺水速水速2【解题思路和方法】 大多数状况可以干脆利用数量关系的公式。例1 一只船顺水行320千米需用8小时,水流速度为每小时15千米,这只船逆水行这段路程需用几小时?解: 由条件知,顺水速船速水速3208,而水速为每小时15千米,所以,船速为每小时 32081525(千米)船的逆水速为 251510(千米)船逆水行这段路程的时间为 3201032(小时)例2 甲船逆水行360千米需18小时,返回原地需
27、10小时;乙船逆水行同样一段间隔 需15小时,返回原地需多少时间?解:甲船速水速3601036 甲船速水速3601820可见 (3620)相当于水速的2倍,所以,水速为每小时 (3620)28(千米)又因为, 乙船速水速36015,所以,乙船速为 36015832(千米)乙船顺水速为 32840(千米)所以, 乙船顺水航行360千米须要360409(小时)例3 一架飞机飞行在两个城市之间,飞机的速度是每小时576千米,风速为每小时24千米,飞机逆风飞行3小时到达,顺风飞回须要几小时?解: 这道题可以依据流水问题来解答。(1)两城相距多少千米? (57624)31656(千米)(2)顺风飞回须要
28、多少小时? 1656(57624)2.76(小时)列成综合算式 (57624)3(57624)2.76(小时) 12 列车问题【含义】这是及列车行驶有关的一些问题,解答时要留意列车车身的长度。【数量关系】火车过桥: 过桥时间(车长桥长)车速 火车追及: 追刚好间(甲车长乙车长间隔 (甲车速乙车速) 火车相遇: 相遇时间(甲车长乙车长间隔 )(甲车速乙车速)【解题思路和方法】 大多数状况可以干脆利用数量关系的公式。例1 一座大桥长2400米,一列火车以每分钟900米的速度通过大桥,从车头开上桥到车尾分开桥共须要3分钟。这列火车长多少米?解: 火车3分钟所行的路程,就是桥长及火车车身长度的和。(1
29、)火车3分钟行多少米? 90032700(米)(2)这列火车长多少米? 27002400300(米)列成综合算式 90032400300(米)例2 一列长200米的火车以每秒8米的速度通过一座大桥,用了2分5秒钟时间,求大桥的长度是多少米?解: 火车过桥所用的时间是2分5秒125秒,所走的路程是(8125)米,这段路程就是(200米桥长),所以,桥长为 8125200800(米)例3 一列长225米的慢车以每秒17米的速度行驶,一列长140米的快车以每秒22米的速度在后面追逐,求快车从追上到追过慢车须要多长时间?解: 从追上到追过,快车比慢车要多行(225140)米,而快车比慢车每秒多行(22
30、17)米,因此,所求的时间为(225140)(2217)73(秒)例4 一列长150米的列车以每秒22米的速度行驶,有一个扳道工人以每秒3米的速度迎面走来,那么,火车从工人身旁驶过须要多少时间?解: 假如把人看作一列长度为零的火车,原题就相当于火车相遇问题。150(223)6(秒)例5 一列火车穿越一条长2000米的隧道用了88秒,以同样的速度通过一条长1250米的大桥用了58秒。求这列火车的车速和车身长度各是多少?解: 车速和车长都没有变,但通过隧道和大桥所用的时间不同,是因为隧道比大桥长。可知火车在(8858)秒的时间内行驶了(20001250)米的路程,因此,火车的车速为每秒 (2000
31、1250)(8858)25(米)进而可知,车长和桥长的和为(2558)米,因此,车长为25581250200(米) 13 时钟问题【含义】 就是探讨钟面上时针及分针关系的问题,如两针重合、两针垂直、两针成一线、两针夹角为60度等。时钟问题可及追及问题相类比。【数量关系】 分针的速度是时针的12倍,二者的速度差为11/12。通常按追及问题来对待,也可以按差倍问题来计算。【解题思路和方法】 变通为“追及问题”后可以干脆利用公式。例1 从时针指向4点开场,再经过多少分钟时针正好及分针重合?解: 钟面的一周分为60格,分针每分钟走一格,每小时走60格;时针每小时走5格,每分钟走5/601/12格。每分
32、钟分针比时针多走(11/12)11/12格。4点整,时针在前,分针在后,两针相距20格。所以分针追上时针的时间为 20(11/12) 22(分)答:再经过22分钟时针正好及分针重合。例2 四点和五点之间,时针和分针在什么时候成直角?解: 钟面上有60格,它的1/4是15格,因此两针成直角的时候相差15格(包括分针在时针的前或后15格两种状况)。四点整的时候,分针在时针后(54)格,假如分针在时针后及它成直角,那么分针就要比时针多走(5415)格,假如分针在时针前及它成直角,那么分针就要比时针多走(5415)格。再依据1分钟分针比时针多走(11/12)格就可以求出二针成直角的时间。(5415)(
33、11/12) 6(分)(5415)(11/12) 38(分) 答:4点06分及4点38分时两针成直角。例3 六点及七点之间什么时候时针及分针重合?解: 六点整的时候,分针在时针后(56)格,分针要刚好针重合,就得追上时针。这事实上是一个追及问题。 (56)(11/12) 33(分)答:6点33分的时候分针刚好针重合。 14 盈亏问题【含义】 依据肯定的人数,安排肯定的物品,在两次安排中,一次有余(盈),一次缺乏(亏),或两次都有余,或两次都缺乏,求人数或物品数,这类应用题叫做盈亏问题。【数量关系】 一般地说,在两次安排中,假如一次盈,一次亏,则有: 参与安排总人数(盈亏)安排差假如两次都盈或都
34、亏,则有: 参与安排总人数(大盈小盈)安排差 参与安排总人数(大亏小亏)安排差【解题思路和方法】 大多数状况可以干脆利用数量关系的公式。例1 给幼儿园小挚友分苹果,若每人分3个就余11个;若每人分4个就少1个。问有多少小挚友?有多少个苹果?解: 依据“参与安排的总人数(盈亏)安排差”的数量关系:(1)有小挚友多少人? (111)(43)12(人)(2)有多少个苹果? 3121147(个)例2 修一条马路,假如每天修260米,修完全长就得延长8天;假如每天修300米,修完全长仍得延长4天。这条路全长多少米?解: 题中原定完成任务的天数,就相当于“参与安排的总人数”,依据“参与安排的总人数(大亏小
35、亏)安排差”的数量关系,可以得知原定完成任务的天数为 (26083004)(300260)22(天)这条路全长为 300(224)7800(米)例3 学校组织春游,假如每辆车坐40人,就余下30人;假如每辆车坐45人,就刚好坐完。问有多少车?多少人?解: 本题中的车辆数就相当于“参与安排的总人数”,于是就有 (1)有多少车? (300)(4540)6(辆)(2)有多少人? 40630270(人) 15 工程问题【含义】 工程问题主要探讨工作量、工作效率和工作时间三者之间的关系。这类问题在已知条件中,经常不给出工作量的详细数量,只提出“一项工程”、“一块土地”、“一条水渠”、“一件工作”等,在解
36、题时,经常用单位“1”表示工作总量。【数量关系】 解答工程问题的关键是把工作总量看作“1”,这样,工作效率就是工作时间的倒数(它表示单位时间内完成工作总量的几分之几),进而就可以依据工作量、工作效率、工作时间三者之间的关系列出算式。 工作量工作效率工作时间 工作时间工作量工作效率 工作时间总工作量(甲工作效率乙工作效率)【解题思路和方法】 变通后可以利用上述数量关系的公式。例1 一项工程,甲队单独做须要10天完成,乙队单独做须要15天完成,如今两队合作,须要几天完成?解: 题中的“一项工程”是工作总量,由于没有给出这项工程的详细数量,因此,把此项工程看作单位“1”。由于甲队独做需10天完成,那
37、么每天完成这项工程的1/10;乙队单独做需15天完成,每天完成这项工程的1/15;两队合做,每天可以完成这项工程的(1/101/15)。由此可以列出算式:1(1/101/15)11/66(天)答:两队合做须要6天完成。例2 一批零件,甲独做6小时完成,乙独做8小时完成。如今两人合做,完成任务时甲比乙多做24个,求这批零件共有多少个?解一: 设总工作量为1,则甲每小时完成1/6,乙每小时完成1/8,甲比乙每小时多完成(1/61/8),二人合做时每小时完成(1/61/8)。因为二人合做须要1(1/61/8)小时,这个时间内,甲比乙多做24个零件,所以 (1)每小时甲比乙多做多少零件? 241(1/
38、61/8)7(个) (2)这批零件共有多少个?7(1/61/8)168(个)解二: 上面这道题还可以用另一种方法计算:两人合做,完成任务时甲乙的工作量之比为 1/61/843由此可知,甲比乙多完成总工作量的 43 / 43 1/7所以,这批零件共有 241/7168(个)例3 一件工作,甲独做12小时完成,乙独做10小时完成,丙独做15小时完成。如今甲先做2小时,余下的由乙丙二人合做,还需几小时才能完成?解: 必需先求出各人每小时的工作效率。假如能把效率用整数表示,就会给计算带来便利,因此,我们设总工作量为12、10、和15的某一公倍数,例如最小公倍数60,则甲乙丙三人的工作效率分别是甲: 60125 乙: 60106丙: 60154因此余下的工作量由乙丙合做还须要(6052)(64)5(小时)例4 一个水池,底部装有一个常开的排水管,上部装有若干个同样粗细的进水管。当翻开4个进水管时,须要5小时才能注满水池;当翻开2个进水管时,须要15小时才能注满水池;如今要用2小时将水池注满,至少要翻开多少个进水管?解: 注(排)水问题是一类特别的工程问题。往水池注水或从水池排水相当于一项工程,水的流量就是工作量,单位时间内水的流