《相似三角形讲义教师版.docx》由会员分享,可在线阅读,更多相关《相似三角形讲义教师版.docx(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、相像三角形基本学问学问点一:放缩与相像形1. 图形的放大或缩小,称为图形的放缩运动。2. 把形态相同的两个图形说成是相像的图形,或者就说是相像性。留意:相像图形强调图形形态相同,与它们的位置, 颜色, 大小无关。 相像图形不仅仅指平面图形,也包括立体图形相像的状况。 我们可以这样理解相像形:两个图形相像,其中一个图形可以看作是由另一个图形放大或缩小得到的 若两个图形形态与大小都相同,这时是相像图形的一种特例全等形3. 相像多边形的性质:假如两个多边形是相像形,那么这两个多边形的对应角相等,对应边的长度成比例。留意:当两个相像的多边形是全等形时,他们的对应边的长度的比值是1.学问点二:比例线段有
2、关概念与性质(1)有关概念1, 比:选用同一长度单位量得两条线段。a, b的长度分别是m, n,那么就说这两条线段的比是a:bm:n(或)2, 比的前项,比的后项:两条线段的比a:b中。a叫做比的前项,b叫做比的后项。说明:求两条线段的比时,对这两条线段要用同一单位长度。3, 比例:两个比相等的式子叫做比例,如4, 比例外项:在比例(或a:bc:d)中a, d叫做比例外项。5, 比例内项:在比例(或a:bc:d)中b, c叫做比例内项。6, 第四比例项:在比例(或a:bc:d)中,d叫a, b, c的第四比例项。7, 比例中项:假如比例中两个比例内项相等,即比例为(或a:bb:c时,我们把b叫
3、做a与d的比例中项。8.比例线段:对于四条线段a, b, c, d,假如其中两条线段的长度的比与另两条线段的长度的比相等,即(或a:b=c:d),那么,这四条线段叫做成比例线段,简称比例线段。(留意:在求线段比时,线段单位要统一,单位不统一应先化成同一单位)(2)比例性质1.基本性质: (两外项的积等于两内项积)2.反比性质: (把比的前项, 后项交换)3.更比性质(交换比例的内项或外项):4.合比性质:(分子加(减)分母,分母不变)留意:事实上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间发生同样与差变更比例仍成立如: 5.等比性质:(分子分母分别相加,比值不变.) 假如,
4、那么留意:(1)此性质的证明运用了“设法” ,这种方法是有关比例计算,变形中一种常用方法 (2)应用等比性质时,要考虑到分母是否为零 (3)可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立学问点三:黄金分割1) 定义:在线段AB上,点C把线段AB分成两条线段AC与BC(ACBC),假如,即AC2=ABBC,那么称线段AB被点C黄金分割,点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比。其中0.618。2)黄金分割的几何作图:已知:线段AB.求作:点C使C是线段AB的黄金分割点.作法:过点B作BDAB,使;连结AD,在DA上截取DE=DB;在AB上截取AC=
5、AE,则点C就是所求作的线段AB的黄金分割点.黄金分割的比值为:.(只要求记住)3)矩形中,假如宽与长的比是黄金比,这个矩形叫做黄金矩形。学问点四:平行线分线段成比例定理(一)平行线分线段成比例定理1.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比.例. 已知l1l2l3, A D l1 B E l2 C F l3可得2.推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例. (1) 是“A”字型(2) 是“8”字型 经常考,关键在于找由DEBC可得:.此推论较原定理应用更加广泛,条件是平行.3.推论的逆定理:假如一条直线截三角形的两边(或两边的延长线
6、)所得的对应线段成比例.那么这条直线平行于三角形的第三边. (即利用比例式证平行线)4.定理:平行于三角形的一边,并且与其它两边相交的直线,所截的三角形的三边与原三角形三边对应成比例. 5.平行线等分线段定理:三条平行线截两条直线,假如在一条直线上截得的线段相等,难么在另一条直线上截得的线段也相等。 三角形一边的平行线性质定理定理:平行于三角形一边的直线截其他两边所得的线段对应成比例。几何语言 ABE中BDCE 简记: 归纳: 与推广:类似地还可以得到与 三角形一边的平行线性质定理推论 平行于三角形一边的直线截其他两边所在的直线,截得的三角形的三边与原三角形的三边对应成比例.三角形一边的平行线
7、的判定定理三角形一边平行线判定定理 假如一条直线截三角形的两边所得的对应线段成比例,那么这条直线平行于三角形的第三边.三角形一边的平行线判定定理推论 假如一条直线截三角形两边的延长线(这两边的延长线在第三边的同侧)所得的对应线段成比例,那么这条直线平行于三角形的第三边.平行线分线段成比例定理1平行线分线段成比例定理:两条直线被三条平行的直线所截,截得的对应线段成比例.用符号语言表示:ADBECF,.2平行线等分线段定理:两条直线被三条平行的直线所截,假如在始终线上所截得的线段相等,那么在另始终线上所截得的线段也相等.用符号语言表示:. 重心定义:三角形三条中线相交于一点,这个交点叫做三角形的重
8、心.重心的性质:三角形的重心到一个顶点的距离,等于它到对边中点的距离的两倍.学问点三:相像三角形1、 相像三角形1)定义:假如两个三角形中,三角对应相等,三边对应成比例,那么这两个三角形叫做相像三角形。几种特殊三角形的相像关系:两个全等三角形确定相像。两个等腰直角三角形确定相像。两个等边三角形确定相像。两个直角三角形与两个等腰三角形不愿定相像。补充:对于多边形而言,全部圆相像;全部正多边形相像(如正四边形, 正五边形等等);2) 性质:两个相像三角形中,对应角相等, 对应边成比例。3) 相像比:两个相像三角形的对应边的比,叫做这两个三角形的相像比。 如ABC与DEF相像,记作ABC DEF。相
9、像比为k。4)判定:定义法:对应角相等,对应边成比例的两个三角形相像。三角形相像的预备定理:平行于三角形一边的直线与其它两边相交,所构成的三角形与原三角形相像。 三角形相像的判定定理:判定定理1:假如一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相像简述为:两角对应相等,两三角形相像(此定理用的最多)判定定理2:假如一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相像简述为:两边对应成比例且夹角相等,两三角形相像判定定理3:假如一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相像简述为:三边对应成比例,两三角形相像直角三
10、角形相像判定定理:.斜边与一条直角边对应成比例的两直角三角形相像。.直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相像,并且分成的两个直角三角形也相像。 补充一:直角三角形中的相像问题:斜边的高分直角三角形所成的两个直角三角形与原直角三角形相像.射影定理:CD=ADBD, AC=ADAB,BC=BDBA(在直角三角形的计算与证明中有广泛的应用).补充二:三角形相像的判定定理推论推论一:顶角或底角相等的两个等腰三角形相像。 推论二:腰与底对应成比例的两个等腰三角形相像。 推论三:有一个锐角相等的两个直角三角形相像。 推论四:直角三角形被斜边上的高分成的两个直角三角形与原三角形都相像。
11、推论五:假如一个三角形的两边与其中一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相像。相像三角形的性质 相像三角形对应角相等, 对应边成比例. 相像三角形对应高, 对应角平分线, 对应中线, 周长的比都等于相像比(对应边的比). 相像三角形对应面积的比等于相像比的平方.2、 相像的应用:位似1)定义:假如两个多边形不仅相像,而且对应顶点的连线相交于一点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相像比又称为位似比。需留意:位似是一种具有位置关系的相像,所以两个图形是位似图形,必定是相像图形,而相像图形不愿定是位似图形。两个位似图形的位似中心只有一个。两个位似图形可
12、能位于位似中心的两侧,也可能位于位似中心的一侧。位似比就是相像比。2)性质:位似图形首先是相像图形,所以它具有相像图形的一切性质。位似图形是一种特殊的相像图形,它又具有特殊的性质,位似图形上随意一对对应点到位似中心的距离等于位似比(相像比)。每对位似对应点与位似中心共线,不经过位似中心的对应线段平行。巩固练习:典型例题例1, .弦AB与CD相交于o内一点P,求证:PAPB=PCPD例2:如图,ABC中,AD是BAC的平分线,AD的垂直平分线交AD于E,交BC的延长线于F求证: ABF CAF例3, 如图:在Rt ABC中, ABC=900,BDAC于D,若 AB=6 ;AD=2; 则AC= ;
13、BD= ;BC= ;例4, 如图:在Rt ABC中, ABC=900,BDAC于D ,若E是BC中点,ED的延长线交BA的延长线于F,求证:AB : AC=DF : BFABDC例5.如图:小明想测量一颗大树AB的高度,发觉树的影子恰好落在土坡的坡面CD与地面CB上,测得CD=4m,BC=10m,CD与地面成30度角,且测得1米竹杆的影子长为2米,那么树的高度是多少?针对性练习1, 推断全部的等腰三角形都相像 ( )全部的直角三角形都相像 ( )全部的等边三角形都相像 ( )全部的等腰直角三角形都相像 ( )2, t ABC的斜边AB上有一动点(不与点A, B重合 ),过点作直线截ABC,使截
14、得的三角形与ABC相像,则满足这样条件的直线共有多少条,请你画出来。3.假如两个相像三角形的面积之比为1:9,则它们对应边的比为 ;对应高的比为 。周长的比为 。4.假如两个相像三角形的面积之比为2:7,较大三角形一边上的高为 ,则较小三角形对应边上的高为 。10.如图,小华在晚上由路灯A走向路灯B,当他走到点P时,发觉他身后影子的顶部刚好接触到路灯A的底部,当他向前再步行12m到达点Q时,发觉他身前影子的顶部刚好接触到路灯B的底部,已知小华的身高是1.60m,两个路灯的高度都是9.6m,设AP =x(m)。(1)求两路灯之间的距离;(2)当小华走到路灯B时,他在路灯下的影子是多少?常见的相像
15、三角形小结:二, 巩固练习:1, 有一张比例尺为1 4000的地图上,一块多边形地区的周长是60cm,面积是250cm2,则这个地区的实际周长是 m,面积是 m22、 有一个三角形的边长为3,4,5,另一个与它相像的三角形的最小边长为7,则另一个三角形的周长为 ,面积是 。3, 两个相像三角形的对应角平分线的长分别为10cm与20cm,若它们的周长的差是60cm,则较大的三角形的周长是 ,若它们的面积之与为260cm2,则较小的三角形的面积为 cm24, 照相机镜头的取景框长16毫米。为了风景照的视觉效果最好,人像应在取景框长的黄金分割点处。如图,要拍左侧的风景,人站在右侧,则人像应距左边框_
16、 _毫米。5, 如图,若ABC的中线AD与中线BE交于点G,ABG的面积如图,若ABC的中线AD与中线BE交于点G,ABG的面积为4,ABC的面积为_。6, 如图,矩形ABCD中,AEBD于E,若BE=4,DE=9,则矩形的面积是 。7、 下列各组的两个图形,确定相像的是( )A、 两条对角线分别对应成比例的两个平行四边形;B, 有一个角对应相等的两个菱形;C、 等腰梯形的中位线把它分成的两个等腰梯形;D, 对应边成比例的两个多边形。9, 如图,在平行四边形ABCD中,已知AE交BC于点E,交BD于点F,且BE2=EFEA。求证:AB2=BFBD。10, 如图,在ABC中,已知EFAC,D是B
17、C上一点,连接AD,则ABD与BEF的面积相等。求证:BE2=BDBC。11, 如图,由边长为1的25个小正方形组成的正方形网格BCA上有一个ABC;在网格上画出一个与ABC相像且面积最大的A1B1C1,使它的三个顶点都落在小正方形的顶点上,求A1B1C1的最大面积。三, 课后练习1, 假如ABCABC,相像比为k (k1),则k的值是( )AA:ABAB:AB CB:BDBC:BC2, 若ABCABC,A=40,C=110,则B等于( )A30B50 C40D703, 三角形三边之比3:5:7,与它相像的三角形最长边是21cm,另两边之与是( )A15cmB18cm C21cmD24cm4,
18、 如图ABCDEF,则图中相像三角形的对数为( )A1对B2对 C3对D4对5, ABCA1B1C1,相像比为2:3,A1B1C1A2B2C2,相像比为5:4,则ABC与A2B2C2的相像比为( )AB CD6, 在比例尺1:10000的地图上,相距2cm的两地的实际距离是( )A200cmB200dm C200mD200km7, 已知线段a=10,线段b是线段a上黄金分割的较长部分,则线段b的长是( )AB CD8, 若则下列各式中不正确的是( )AB CD9, 已知ABC中,D, E分别在AB, AC上,且AE=1.2,EC=0.8,AD=1.5,DB=1,则下列式子正确的是( )AB C
19、D10, 如图:在ABC中,DEAC,则DE:AC=( )A8:3B3:8 C8:5D5:811, 计算(1)若求的值.(2)已知:且2ab3c=21,求a,b,c的值.12, 在等边ABC中,P是BC上一点,AP的垂直平分线分别交AB, AC于M, N,求证:MBPPCN.相像三角形经典大题解析1.如图,已知直线与直线相交于点分别交轴于两点矩形的顶点分别在直线上,顶点都在轴上,且点与点重合(1)求的面积;(2)求矩形的边与的长;(3)若矩形从原点动身,沿轴的反方向以每秒1个单位长度的速度平移,设移动时间为秒,矩形与重叠部分的面积为,求关于的函数关系式,并写出相应的的取值范围ADBEOCFxy
20、y(G)【答案】(1)解:由得点坐标为由得点坐标为由解得点的坐标为 (2)解:点在上且 点坐标为又点在上且点坐标为 (3)解法一:当时,如图1,矩形与重叠部分为五边形(时,为四边形)过作于,则ADBEORFxyyM(图3)GCADBEOCFxyyG(图1)RMADBEOCFxyyG(图2)RM即即当时,如图2,为梯形面积,G(8t,0)GR=,当时,如图3,为三角形面积,2如图,矩形中,厘米,厘米()动点同时从点动身,分别沿,运动,速度是厘米秒过作直线垂直于,分别交,于当点到达终点时,点也随之停止运动设运动时间为秒(1)若厘米,秒,则_厘米;(2)若厘米,求时间,使,并求出它们的相像比;(3)
21、若在运动过程中,存在某时刻使梯形与梯形的面积相等,求的取值范围;DQCPNBMADQCPNBMA(4)是否存在这样的矩形:在运动过程中,存在某时刻使梯形,梯形,梯形的面积都相等?若存在,求的值;若不存在,请说明理由【答案】解: (1),(2),使,相像比为(3),即,当梯形与梯形的面积相等,即化简得,则,(4)时梯形与梯形的面积相等梯形的面积与梯形的面积相等即可,则,把代入,解之得,所以所以,存在,当时梯形与梯形的面积, 梯形的面积相等3.如图,已知ABC是边长为6cm的等边三角形,动点P, Q同时从A, B两点动身,分别沿AB, BC匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是
22、2cm/s,当点Q到达点C时,P, Q两点都停止运动,设运动时间为t(s),解答下列问题:(1)当t2时,推断BPQ的形态,并说明理由;(2)设BPQ的面积为S(cm2),求S与t的函数关系式;(3)作QR/BA交AC于点R,连结PR,当t为何值时,APRPRQ?【答案】 解:(1)BPQ是等边三角形,当t=2时,AP=21=2,BQ=22=4,所以BP=AB-AP=6-2=4,所以BQ=BP.又因为B=600,所以BPQ是等边三角形.(2)过Q作QEAB,垂足为E,由QB=2y,得QE=2tsin600=t,由AP=t,得PB=6-t,所以SBPQ=BPQE=(6-t)t=t2+3t;(3)
23、因为QRBA,所以QRC=A=600,RQC=B=600,又因为C=600,所以QRC是等边三角形,所以QR=RC=QC=6-2t.因为BE=BQcos600=2t=t,所以EP=AB-AP-BE=6-t-t=6-2t,所以EPQR,EP=QR,所以四边形EPRQ是平行四边形,所以PR=EQ=t,又因为PEQ=900,所以APR=PRQ=900.因为APRPRQ,所以QPR=A=600,所以tan600=,即,所以t=,所以当t=时, APRPRQ 4在直角梯形OABC中,CBOA,COA90,CB3,OA6,BA3分别以OA, OC边所在直线为x轴, y轴建立如图1所示的平面直角坐标系(1)
24、求点B的坐标;(2)已知D, E分别为线段OC, OB上的点,OD5,OE2EB,直线DE交x轴于点F求直线DE的解析式;(3)点M是(2)中直线DE上的一个动点,在x轴上方的平面内是否存在另一个点N使以O, D, M, N为顶点的四边形是菱形?若存在,请求出点N的坐标;若不存在,请说明理由ABDE(第26题 图1)FCOMNxy5 小丽参加数学爱好小组活动,供应了下面3个有联系的问题,请你扶植解决:(1)如图1,正方形中,作交于,交于,求证:;(2)如图2,正方形中,点分别在上,点分别在上,且,求的值;(3)如图3,矩形中,点分别在上,且,求的值(第23题图1)(第23题图2)(第23题图3
25、)(3)作交BC于M作交AB于N则又 。6如图,在等腰梯形中,动点从点动身沿以每秒1个单位的速度向终点运动,动点从点动身沿以每秒2个单位的速度向点运动两点同时动身,当点到达点时,点随之停止运动(1)梯形的面积等于 ;(2)当时,点离开点的时间等于 秒;(3)当三点构成直角三角形时,点离开点多少时间?ACQDPB7.如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C, D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连结BG,DE我们探究下列图中线段BG, 线段DE的长度关系与所在直线的位置关系: (1)猜想如图1中线段BG, 线段DE的长度关系与所在直线的位置关系;将图1中的正方形CEFG围着点C按顺时针(或逆时针)方向旋转随意角度,得到如图2, 如图3情形请你通过视察, 测量等方法推断中得到的结论是否照旧成立,并选取图2证明你的推断(2)将原题中正方形改为矩形(如图46),且AB=a,BC=b,CE=ka, CG=kb (ab,k0),第(1)题中得到的结论哪些成立,哪些不成立?若成立,以图5为例简要说明理由(3)在第(2)题图5中,连结, ,且a=3,b=2,k=,求BE+DG第 16 页