九年级数学上册知识点归纳(北师大版).docx

上传人:叶*** 文档编号:34986796 上传时间:2022-08-19 格式:DOCX 页数:11 大小:65.70KB
返回 下载 相关 举报
九年级数学上册知识点归纳(北师大版).docx_第1页
第1页 / 共11页
九年级数学上册知识点归纳(北师大版).docx_第2页
第2页 / 共11页
点击查看更多>>
资源描述

《九年级数学上册知识点归纳(北师大版).docx》由会员分享,可在线阅读,更多相关《九年级数学上册知识点归纳(北师大版).docx(11页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、九年级数学上册学问点归纳(北师大版)第一章 特殊平行四边形第二章 一元二次方程第三章 概率的进一步相识第四章 图形的相像第五章 投影及视图第六章 反比例函数(八下前情回忆)平行四边的定义:两线对边分别平行的四边形叫做平行四边形,平行四边形不相邻的两顶点连成的线段叫做它的对角线。平行四边形的性质:平行四边形的对边相等,对角相等,对角线相互平分。平行四边形的判别方法:两组对边分别平行的四边形是平行四边形。两组对边分别相等的四边形是平行四边形。一组对边平行且相等的四边形是平行四边形。两条对角线相互平分的四边形是平行四边形。平行线之间的间隔 :若两条直线相互平行,则其中一条直线上随意两点到另一条直线的

2、间隔 相等。这个间隔 称为平行线之间的间隔 。第一章 特殊平行四边形1菱形的性质及断定菱形的定义:一组邻边相等的平行四边形叫做菱形。菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线相互垂直平分,每一条对角线平分一组对角。菱形是轴对称图形,每条对角线所在的直线都是对称轴。菱形的判别方法:一组邻边相等的平行四边形是菱形。对角线相互垂直的平行四边形是菱形。四条边都相等的四边形是菱形。2矩形的性质及断定矩形的定义:有一个角是直角的平行四边形叫矩形。矩形是特殊的平行四边形。矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角。(矩形是轴对称图形,有两条对称轴)矩形的断定:有一个内角

3、是直角的平行四边形叫矩形(依据定义)。对角线相等的平行四边形是矩形。四个角都相等的四边形是矩形。推论:直角三角形斜边上的中线等于斜边的一半。3正方形的性质及断定正方形的定义:一组邻边相等的矩形叫做正方形。正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。(正方形是轴对称图形,有两条对称轴)正方形常用的断定:有一个内角是直角的菱形是正方形;邻边相等的矩形是正方形;对角线相等的菱形是正方形;对角线相互垂直的矩形是正方形。正方形、矩形、菱形和平行边形四者之间的关系(如图3所示):梯形定义:一组对边平行且另一组对边不平行的四边形叫做梯形。两条腰相等的梯形叫做等腰梯形。一条腰和底垂直的梯形叫做直

4、角梯形。平行四边形菱形矩形正方形一组邻边相等一组邻边相等且一个内角为直角(或对角线相互垂直平分)一内角为直角一邻边相等或对角线垂直一个内角为直角(或对角线相等)图3等腰梯形的性质:等腰梯形同一底上的两个内角相等,对角线相等。同一底上的两个内角相等的梯形是等腰梯形。三角形的中位线平行于第三边,并且等于第三边的一半。夹在两条平行线间的平行线段相等。在直角三角形中,斜边上的中线等于斜边的一半第二章 一元二次方程1相识一元二次方程只含有一个未知数的整式方程,且都可以化为(a、b、c为常数,a0)的形式,这样的方程叫一元二次方程。把(a、b、c为常数,a0)称为一元二次方程的一般形式,a为二次项系数;b

5、为一次项系数;c为常数项。2用配方法求解一元二次方程配方法 配方法解一元二次方程的根本步骤:把方程化成一元二次方程的一般形式;将二次项系数化成1;把常数项移到方程的右边;两边加上一次项系数的一半的平方;把方程转化成的形式;两边开方求其根。3用公式法求解一元二次方程公式法 (留意在找abc时须先把方程化为一般形式)4用因式分解法求解一元二次方程分解因式法 把方程的一边变成0,另一边变成两个一次因式的乘积来求解。(主要包括“提公因式”和“十字相乘”)5一元二次方程的根及系数的关系根及系数的关系:当b2-4ac0时,方程有两个不等的实数根;当b2-4ac=0时,方程有两个相等的实数根;当b2-4ac

6、0时,方程无实数根。假如一元二次方程的两根分别为x1、x2,则有:。一元二次方程的根及系数的关系的作用:(1)已知方程的一根,求另一根;(2)不解方程,求二次方程的根x1、x2的对称式的值,特殊留意以下公式: 其他能用或表达的代数式。(3)已知方程的两根x1、x2,可以构造一元二次方程:(4)已知两数x1、x2的和及积,求此两数的问题,可以转化为求一元二次方程 的根6应用一元二次方程在利用方程来解应用题时,主要分为两个步骤:设未知数(在设未知数时,大多数状况只要设问题为x;但也有时也须依据已知条件及等量关系等诸多方面考虑);找寻等量关系(一般地,题目中会含有一表述等量关系的句子,只须找到此句话

7、即可依据其列出方程)。处理问题的过程可以进一步概括为: 第三章 概率的进一步相识用树状图或表格求概率相关学问点链接:频数及频率频数:在数据统计中,每个对象出现的次数叫做频数,频率:每个对象出现的次数及总次数的比值为频率。概率的意义和大小:概率就是表示每件事情发生的可能性大小,即一个时间发生的可能性大小的数值。必定事务发生的概率为1;不行能事务发生的概率为0;不确定事务发生的概率在0及1之间。【学问点1】频率及概率的含义在试验中,每个对象出现的频繁程度不同,我们称每个对象出现的次数为频数,而每个对象出现的次数及总次数的比值为频率,即把刻画事务A发生的可能性大小的数值,称为事务A发生的概率。【学问

8、点2】通过试验运用稳定的频率来估计某一时间的概率在进展试验的时候,当试验的次数很大时,某个事务发生的频率稳定在相应的概率旁边。我们可以通过屡次试验,用一个事务发生的频率来估计这一事务发生的频率。【学问点3】利用画树状图或列表法求概率(重难点)第四章 图形的相像1成比例线段一. 线段的比1. 假如选用同一个长度单位量得两条线段AB, CD的长度分别是m、n,那么就说这两条线段的比AB:CD=m:n ,或写成.2. 四条线段a、b、c、d中,假如a及b的比等于c及d的比,即,那么这四条线段a、b、c、d叫做成比例线段,简称比例线段.3. 留意点:a:b=k,说明a是b的k倍;由于线段a、b的长度都

9、是正数,所以k是正数;比及所选线段的长度单位无关,求出时两条线段的长度单位要一样;_图1_B_C_A除了a=b之外,a:bb:a, 及互为倒数;比例的根本性质:若, 则ad=bc; 若ad=bc, 则_图2_F_E_D_C_B_A_l_3_l_2_l_12平行线分线段成比例1. 平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例. 如图2, l1 / l2 / l3,则.二. 黄金分割1. 如图1,点C把线段AB分成两条线段AC和BC,假如,那么称线段AB被点C黄金分割,点C叫做线段AB的黄金分割点,AC及AB的比叫做黄金比. 2.黄金分割点是最美丽、最令人赏心悦目的点.3相像

10、多边形1. 一般地,形态一样的图形称为相像图形.2. 对应角相等、对应边成比例的两个多边形叫做相像多边形.相像多边形对应边的比叫做相像比.1. 在相像多边形中,最为简洁的就是相像三角形.2. 对应角相等、对应边成比例的三角形叫做相像三角形.相像三角形对应边的比叫做相像比.3. 全等三角形是相像三角的特例,这时相像比等于1. 留意:证两个相像三角形,及证两个全等三角形一样,应把表示对应顶点的字母写在对应的位置上.4. 相像三角形对应高的比,对应中线的比及对应角平分线的比都等于相像比.5. 相像三角形周长的比等于相像比. 6. 相像三角形面积的比等于相像比的平方.相像多边形的周长等于相像比;面积比

11、等于相像比的平方.4探究三角形相像的条件1. 相像三角形的断定方法:一般三角形直角三角形根本定理:平行于三角形的一边且和其他两边(或两边的延长线)相交的直线,所截得的三角形及原三角形相像.两角对应相等;两边对应成比例,且夹角相等;三边对应成比例.一个锐角对应相等;两条边对应成比例:a. 两直角边对应成比例;b. 斜边和始终角边对应成比例.2. 平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例. 如图2, l1 / l2 / l3,则.3. 平行于三角形一边的直线及其他两边(或两边的延长线)相交,所构成的三角形及原三角形相像.5相像三角形的断定定理的证明6利用相像三角形测高7相

12、像三角形的性质8图形的位似第五章 投影及视图A)三视图主视图从正面看到的图左视图从左面看到的图俯视图从上面看到的图画物体的三视图时,要符合如下原则:大小:长对正,高平齐,宽相等.虚实:在画图时,看的见局部的轮廓通常画成实线,看不见局部的轮廓线通常画成虚线.B)投影物体在光线的照耀下,会在地面或墙壁上留下它的影子,这就是投影现象.太阳光线可以看成平行光线,像这样的光线所形成的投影称为平行投影。在同一时刻,物体高度及影子长度成比例.物体的三视图事实上就是该物体在某一平行光线(垂直于投影面的平行光线)下的平行投影.探照灯,手电筒,路灯,和台灯的光线可以看成是从一点动身的光线,像这样的光线所形成的投影

13、称为中心投影皮影和手影都是在灯光照耀下形成的影子.它们是中心投影。C)视点、视线、盲区的定义以及在生活中的应用。.眼睛所在的位置称为视点,.由视点发出的光线称为视线,.眼睛看不到的地方称为盲区第六章 反比例函数学问点1 反比例函数的定义一般地,形如(k为常数,)的函数称为反比例函数,它可以从以下几个方面来理解:x是自变量,y是x的反比例函数;自变量x的取值范围是的一实在数,函数值的取值范围是;比例系数是反比例函数定义的一个重要组成局部;反比例函数有三种表达式:(),(),(定值)();函数()及()是等价的,所以当y是x的反比例函数时,x也是y的反比例函数。(k为常数,)是反比例函数的一局部,

14、当k=0时,就不是反比例函数了,由于反比例函数()中,只有一个待定系数,因此,只要一组对应值,就可以求出k的值,从而确定反比例函数的表达式。学问点2用待定系数法求反比例函数的解析式由于反比例函数()中,只有一个待定系数,因此,只要一组对应值,就可以求出k的值,从而确定反比例函数的表达式。学问点3反比例函数的图像及画法反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们及原点对称,由于反比例函数中自变量函数中自变量,函数值,所以它的图像及x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但恒久达不到坐标轴。反比例的画法分三个步骤:列表;描点;连线。

15、再作反比例函数的图像时应留意以下几点:列表时选取的数值宜对称选取;列表时选取的数值越多,画的图像越准确;连线时,必需依据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线;画图像时,它的两个分支应全部画出,但切忌将图像及坐标轴相交。学问点4反比例函数的性质关于反比例函数的性质,主要探讨它的图像的位置及函数值的增减状况,如下表:反比例函数()的符号图像性质的取值范围是,y的取值范围是当时,函数图像的两个分支分别在第一、第三象限,在每个象限内,y随x的增大而减小。的取值范围是,y的取值范围是当时,函数图像的两个分支分别在第二、第四象限,在每个象限内,y随x的增大而增大。留意:描绘函数值的增减状况时,必需指出“在每个象限内”否则,笼统地说,当时,y随x的增大而减小“,就会及事实不符的冲突。反比例函数图像的位置和函数的增减性,是有反比例函数系数k的符号确定的,反过来,由反比例函数图像(双曲线)的位置和函数的增减性,也可以推断出k的符号。如在第一、第三象限,则可知。反比例函数()中比例系数k的肯定值的几何意义。如图所示,过双曲线上任一点P(x,y)分别作x轴、y轴的垂线,E、F分别为垂足,则 反比例函数()中,越大,双曲线越远离坐标原点;越小,双曲线越靠近坐标原点。 双曲线是中心对称图形,对称中心是坐标原点;双曲线又是轴对称图形,对称轴是直线y=x和直线y=x。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 初中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁