《应用回归分析整理课后习题参考答案.docx》由会员分享,可在线阅读,更多相关《应用回归分析整理课后习题参考答案.docx(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第二章 一元线性回来分析思索与练习参考答案 2.1 一元线性回来有哪些基本假定答: 假设1, 说明变量X是确定性变量,Y是随机变量; 假设2, 随机误差项具有零均值, 同方差与不序列相关性: E(i)=0 i=1,2, ,n Var (i)=s2 i=1,2, ,n Cov(i, j)=0 ij i,j= 1,2, ,n 假设3, 随机误差项与说明变量X之间不相关: Cov(Xi, i)=0 i=1,2, ,n 假设4, 听从零均值, 同方差, 零协方差的正态分布 iN(0, s2 ) i=1,2, ,n2.2 考虑过原点的线性回来模型 Yi=1Xi+i i=1,2, ,n误差i(i=1,2,
2、 ,n)仍满足基本假定。求1的最小二乘估计解:得:2.3 证明(2.27式),Sei =0 ,SeiXi=0 。证明:其中:即: Sei =0 ,SeiXi=02.4回来方程E(Y)=0+1X的参数0,1的最小二乘估计与最大似然估计在什么条件下等价给出证明。答:由于iN(0, s2 ) i=1,2, ,n所以Yi=0 + 1Xi + iN(0+1Xi , s2 )最大似然函数:使得Ln(L)最大的,就是0,1的最大似然估计值。同时发觉使得Ln(L)最大就是使得下式最小,上式恰好就是最小二乘估计的目标函数相同。值得留意的是:最大似然估计是在iN(0, s2 )的假设下求得,最小二乘估计则不要求分
3、布假设。 所以在iN(0, s2 ) 的条件下, 参数0,1的最小二乘估计与最大似然估计等价。2.5 证明是0的无偏估计。证明:2.6 证明证明:2.7 证明平方与分解公式:SST=SSE+SSR证明:2.8 验证三种检验的关系,即验证:(1);(2)证明:(1)(2)2.9 验证(2.63)式:证明:其中:2.10 用第9题证明是s2的无偏估计量证明:2.14 为了调查某广告对销售收入的影响,某商店记录了5个月的销售收入y(万元)与广告费用x(万元),数据见表2.6,要求用手工计算:表2.6月份12345X12345Y1010202040(1) 画散点图(略)(2) X与Y是否大致呈线性关系
4、?答:从散点图看,X与Y大致呈线性关系。(3) 用最小二乘法估计求出回来方程。计算表XY1104100206(-14)2(-4)221011001013(-7)2(3)2320000200042010027727254044004034142(-6)2与15100与Lxx=10Lyy=600与Lxy=70与100SSR=490SSE=110均3均20均20回来方程为:(4) 求回来标准误差先求SSR(Qe)见计算表。所以第三章3.3证明 随机误差项的方差s2的无偏估计。证明:3.4 一个回来方程的复相关系数R=0.99,样本确定系数R2=0.9801,我们能推断这个回来方程就很志向吗?答:不能
5、断定这个回来方程志向。因为:1. 在样本容量较少,变量个数较大时,确定系数的值简洁接近1,而此时可能F检验或者关于回来系数的t检验,所建立的回来方程都没能通过。2. 样本确定系数与复相关系数接近于1只能说明Y与自变量X1,X2,Xp整体上的线性关系成立,而不能推断回来方程与每个自变量是显著的,还需进行F检验与t检验。3. 在应用过程中发觉,在样本容量确定的状况下,假如在模型中增加说明变量必定使得自由度削减,使得 R2往往增大,因此增加说明变量(尤其是不显著的说明变量)个数引起的R2的增大与拟合好坏无关。3.7 验证证明:多元线性回来方程模型的一般形式为:其阅历回来方程式为,又,故,中心化后,则
6、有,左右同时除以,令,样本数据标准化的公式为则上式可以记为则有3.11 探讨货运总量y(万吨)与工业总产值x1(亿元), 农业总产值x2(亿元), 居民非商品支出x3(亿元)的关系。数据见表3.9(略)。(1)计算出y,x1,x2,x3的相关系数矩阵。SPSS输出如下:则相关系数矩阵为:(2)求出y与x1,x2,x3的三元回来方程。对数据利用SPSS做线性回来,得到回来方程为(3)对所求的方程作拟合优度检验。由上表可知,调整后的确定系数为0.708,说明回来方程对样本观测值的拟合程度较好。(4)对回来方程作显著性检验;原假设:F统计量听从自由度为(3,6)的F分布,给定显著性水平=0.05,查
7、表得,由方查分析表得,F值=8.2834.76,p值=0.015,拒绝原假设,由方差分析表可以得到,说明在置信水平为95%下,回来方程显著。(5)对每一个回来系数作显著性检验;做t检验:设原假设为,统计量听从自由度为n-p-1的t分布,给定显著性水平0.05,查得单侧检验临界值为1.943,X1的t值=1.9421.943。拒绝原假设。由上表可得,在显著性水平常,只有的P值0.05,通过检验,即只有的回来系数较为显著 ;其余自变量的P值均大于0.05,即x1,x2的系数均不显著。第四章4.3 简述用加权最小二乘法消退一元线性回来中异方差性的思想与方法。答:一般最小二乘估计就是找寻参数的估计值使
8、离差平方与达微小。其中每个平方项的权数相同,是一般最小二乘回来参数估计方法。在误差项等方差不相关的条件下,一般最小二乘估计是回来参数的最小方差线性无偏估计。然而在异方差的条件下,平方与中的每一项的地位是不相同的,误差项的方差大的项,在残差平方与中的取值就偏大,作用就大,因而一般最小二乘估计的回来线就被拉向方差大的项,方差大的项的拟合程度就好,而方差小的项的拟合程度就差。由OLS求出的照旧是的无偏估计,但不再是最小方差线性无偏估计。所以就是:对较大的残差平方赐予较小的权数,对较小的残差平方赐予较大的权数。这样对残差所供应信息的重要程度作一番校正,以提高参数估计的精度。加权最小二乘法的方法:4.4
9、简述用加权最小二乘法消退多元线性回来中异方差性的思想与方法。答:运用加权最小二乘法消退多元线性回来中异方差性的思想与一元线性回来的类似。多元线性回来加权最小二乘法是在平方与中加入一个适当的权数 ,以调整各项在平方与中的作用,加权最小二乘的离差平方与为: (2)加权最小二乘估计就是找寻参数的估计值使式(2)的离差平方与达微小。所得加权最小二乘阅历回来方程记做 (3) 多元回来模型加权最小二乘法的方法:首先找到权数,理论上最优的权数为误差项方差的倒数,即 (4)误差项方差大的项接受小的权数,以降低其在式(2)平方与中的作用; 误差项方差小的项接受大的权数,以提高其在平方与中的作用。由(2)式求出的
10、加权最小二乘估计就是参数的最小方差线性无偏估计。一个须要解决的问题是误差项的方差是未知的,因此无法真正依据式(4)选取权数。在实际问题中误差项方差通常与自变量的水平有关(如误差项方差随着自变量的增大而增大),可以利用这种关系确定权数。例如与第j个自变量取值的平方成比例时, 即=k时,这时取权数为 (5)更一般的状况是误差项方差与某个自变量(与|ei|的等级相关系数最大的自变量)取值的幂函数成比例,即=k,其中m是待定的未知参数。此时权数为 (6)这时确定权数 的问题转化为确定幂参数m的问题,可以借助SPSS软件解决。4.5(4.5)式一元加权最小二乘回来系数估计公式。证明:4.6验证(4.8)
11、式多元加权最小二乘回来系数估计公式。证明:对于多元线性回来模型 (1) ,即存在异方差。设用左乘(1)式两边,得到一个新的的模型:,即。因为,故新的模型具有同方差性,故可以用广义最小二乘法估计该模型,得原式得证。4.7 有同学认为当数据存在异方差时,加权最小二乘回来方程与一般最小二乘回来方程之间必定有很大的差异,异方差越严峻,两者之间的差异就越大。你是否同意这位同学的观点?说明缘由。答:不同意。当回来模型存在异方差时,加权最小二乘估计(WLS)只是一般最小二乘估计(OLS)的改进,这种改进可能是微小的,不能理解为WLS确定会得到与OLS迥然不同的方程来,或者大幅度的改进。事实上可以构造这样的数
12、据,回来模型存在很强的异方差,但WLS 与OLS的结果一样。加权最小二乘法不会消退异方差,只是消退异方差的不良影响,从而对模型进行一点改进。第五章5.4 试述前进法的思想方法。答:前进法的基本思想方法是:首先因变量Y对全部的自变量x1,x2,.,xm建立m个一元线性回来方程, 并计算F检验值,选择偏回来平方与显著的变量(F值最大且大于临界值)进入回来方程。每一步只引入一个变量,同时建立m1个二元线性回来方程,计算它们的F检验值,选择偏回来平方与显著的两变量变量(F值最大且大于临界值)进入回来方程。在确定引入的两个自变量以后,再引入一个变量,建立m2个三元线性回来方程,计算它们的F检验值,选择偏
13、回来平方与显著的三个变量(F值最大)进入回来方程。不断重复这一过程,直到无法再引入新的自变量时,即全部未被引入的自变量的F检验值均小于F检验临界值F(1,n-p-1),回来过程结束。5.5 试述后退法的思想方法。答:后退法的基本思想是:首先因变量Y对全部的自变量x1,x2,.,xm建立一个m元线性回来方程, 并计算t检验值与F检验值,选择最不显著(P值最大且大于临界值)的偏回来系数的自变量剔除出回来方程。每一步只剔除一个变量,再建立m1元线性回来方程,计算t检验值与F检验值,剔除偏回来系数的t检验值最小(P值最大)的自变量,再建立新的回来方程。不断重复这一过程,直到无法剔除自变量时,即全部剩余
14、p个自变量的F检验值均大于F检验临界值F(1,n-p-1),回来过程结束。5.6前进法, 后退法各有哪些优缺点?答:前进法的优点是能够将对因变量有影响的自变量按显著性一一选入,计算量小。前进法的缺点是不能反映引进新变量后的变更,而且选入的变量就算不显著也不能删除。后退法的优点是是能够将对因变量没有显著影响的自变量按不显著性一一剔除,保留的自变量都是显著的。后退法的缺点是起先计算量大,当削减一个自变量时,它再也没机会进入了。假如遇到自变量间有相关关系时,前进法与后退法所作的回来方程均会出现不同程度的问题。5.7 试述逐步回来法的思想方法。答:逐步回来的基本思想是有进有出。具体做法是将变量一个一个
15、的引入,当每引入一个自变量后,对已选入的变量要进行逐个检验,当原引入变量由于后面变量的应纳入而变得不再显著时,要将其剔除。引入一个变量或从回来防方程中剔除一个变量,为逐步回来的一步,每一步都要进行F检验,以确保每次引入新的变量之前回来方程中只包含显著的变量。这个过程反复进行,直到无显著变量引入回来方程,也无不显著变量从回来方程中剔除为止。这样就避开了前进法与后退法各自的缺陷,保证了最终得到的回来子集是最优回来子集。5.8 在运用逐步回来法时,进与出的赋值原则是什么?假如渴望回来方程中多保留一些自变量,进应如何赋值?答:原则是要求引入自变量的显著水平进小于剔除自变量的显著性水平出,否则可能出现死循环;若想回来方程多保留自变量,可以增大进的值,使得更多自变量的P值在进的范围内,但要留意,进的值不得超过出的值。第 8 页