《抛物线专题复习讲义及练习解析版doc.docx》由会员分享,可在线阅读,更多相关《抛物线专题复习讲义及练习解析版doc.docx(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、抛物线专题复习讲义及练习1.抛物线的标准方程, 类型及其几何性质 ():标准方程图形焦点准线范围对称轴轴轴顶点 (0,0)离心率2.抛物线的焦半径, 焦点弦的焦半径;的焦半径; 过焦点的全部弦中最短的弦,也被称做通径.其长度为2p. AB为抛物线的焦点弦,则 ,=3. 的参数方程为(为参数),的参数方程为(为参数).考点1 抛物线的定义题型 利用定义,实现抛物线上的点到焦点的距离与到准线的距离之间的转换例1 已知点P在抛物线y2 = 4x上,那么点P到点Q(2,1)的距离与点P到抛物线焦点距离之与的最小值为 【解题思路】将点P到焦点的距离转化为点P到准线的距离解析过点P作准线的垂线交准线于点R
2、,由抛物线的定义知,当P点为抛物线与垂线的交点时,取得最小值,最小值为点Q到准线的距离 ,因准线方程为x=-1,故最小值为3【名师指引】灵敏利用抛物线的定义,就是实现抛物线上的点到焦点的距离与到准线的距离之间的转换,一般来说,用定义问题都与焦半径问题相关【新题导练】1.已知抛物线的焦点为,点,在抛物线上,且, , 成等差数列, 则有 ()A B C D. 解析C 由抛物线定义,即: 2. 已知点F是抛物线的焦点,M是抛物线上的动点,当最小时, M点坐标是 ( )A. B. C. D. 解析 设M到准线的距离为,则,当最小时,M点坐标是,选C考点2 抛物线的标准方程题型:求抛物线的标准方程例2
3、求满足下列条件的抛物线的标准方程,并求对应抛物线的准线方程:(1)过点(-3,2) (2)焦点在直线上【解题思路】以方程的观点看待问题,并留意开口方向的探讨.解析 (1)设所求的抛物线的方程为或, 过点(-3,2) 抛物线方程为或,前者的准线方程是后者的准线方程为 (2)令得,令得, 抛物线的焦点为(4,0)或(0,-2),当焦点为(4,0)时, ,此时抛物线方程;焦点为(0,-2)时 ,此时抛物线方程. 所求抛物线方程为或,对应的准线方程分别是.【名师指引】对开口方向要特别当心,考虑问题要全面【新题导练】3.若抛物线的焦点与双曲线的右焦点重合,则的值 解析4. 对于顶点在原点的抛物线,给出下
4、列条件:焦点在y轴上;焦点在x轴上;抛物线上横坐标为1的点到焦点的距离等于6;抛物线的通径的长为5;由原点向过焦点的某条直线作垂线,垂足坐标为(2,1).能使这抛物线方程为y2=10x的条件是_.(要求填写合适条件的序号)解析 用解除法,由抛物线方程y2=10x可解除,从而满足条件.5. 若抛物线的顶点在原点,开口向上,F为焦点,M为准线与Y轴的交点,A为抛物线上一点,且,求此抛物线的方程解析 设点是点在准线上的射影,则,由勾股定理知,点A的横坐标为,代入方程得或4,抛物线的方程或考点3 抛物线的几何性质题型:有关焦半径与焦点弦的计算与论证例3 设A, B为抛物线上的点,且(O为原点),则直线
5、AB必过的定点坐标为_.【解题思路】由特别入手,先探求定点位置解析设直线OA方程为,由解出A点坐标为解出B点坐标为,直线AB方程为,令得,直线AB必过的定点【名师指引】(1)由于是填空题,可取两特别直线AB, 求交点即可;(2)B点坐标可由A点坐标用换k而得。【新题导练】6. 若直线经过抛物线的焦点,则实数 解析-17.过抛物线焦点F的直线与抛物线交于两点A, B,若A, B在抛物线准线上的射影为,则 ( ) A. B. C. D. 解析C基础巩固训练1.过抛物线的焦点作一条直线与抛物线相交于A, B两点,它们的横坐标之与等于,则这样的直线( )A.有且仅有一条 B.有且仅有两条 C.1条或2
6、条 D.不存在解析C ,而通径的长为42.在平面直角坐标系中,若抛物线上的点到该抛物线焦点的距离为5,则点P的纵坐标为()A. 3 B. 4 C. 5 D. 6解析 B 利用抛物线的定义,点P到准线的距离为5,故点P的纵坐标为43.两个正数a, b的等差中项是,一个等比中项是,且则抛物线的焦点坐标为( ) A B C D解析 D. 4. 假如,是抛物线上的点,它们的横坐标依次为,F是抛物线的焦点,若成等差数列且,则=( )A5 B6 C 7 D9 解析B 依据抛物线的定义,可知(,2,n),成等差数列且,=65, 抛物线准线为l,l与x轴相交于点E,过F且倾斜角等于60的直线与抛物线在x轴上方
7、的部分相交于点A,ABl,垂足为B,则四边形ABEF的面积等于( )A B C D解析 C. 过A作x轴的垂线交x轴于点H,设,则,四边形ABEF的面积=6, 设是坐标原点,是抛物线的焦点,是抛物线上的一点,与轴正向的夹角为,则为 解析. 过A 作轴于D,令,则即,解得综合提高训练7.在抛物线上求一点,使该点到直线的距离为最短,求该点的坐标解析解法1:设抛物线上的点,点到直线的距离,当且仅当时取等号,故所求的点为解法2:当平行于直线且与抛物线相切的直线与抛物线的公共点为所求,设该直线方程为,代入抛物线方程得,由得,故所求的点为8. 已知抛物线(为非零常数)的焦点为,点为抛物线上一个动点,过点且
8、与抛物线相切的直线记为(1)求的坐标;(2)当点在何处时,点到直线的距离最小?解:(1)抛物线方程为 故焦点的坐标为 (2)设 直线的方程是9. 设抛物线()的焦点为 F,经过点 F的直线交抛物线于A, B两点点 C在抛物线的准线上,且BCX轴证明直线AC经过原点O证明:因为抛物线()的焦点为,所以经过点F的直线AB的方程可设为 ,代人抛物线方程得 若记,则是该方程的两个根,所以因为BCX轴,且点C在准线上,所以点C的坐标为,故直线CO的斜率为即也是直线OA的斜率,所以直线AC经过原点O10.椭圆上有一点M(-4,)在抛物线(p0)的准线l上,抛物线的焦点也是椭圆焦点.(1)求椭圆方程;(2)
9、若点N在抛物线上,过N作准线l的垂线,垂足为Q距离,求|MN|+|NQ|的最小值.解:(1)上的点M在抛物线(p0)的准线l上,抛物线的焦点也是椭圆焦点.c=-4,p=8M(-4,)在椭圆上由解得:a=5, b=3椭圆为由p=8得抛物线为设椭圆焦点为F(4,0),由椭圆定义得|NQ|=|NF|MN|+|NQ|MN|+|NF|=|MF|=,即为所求的最小值.参考例题:1, 已知抛物线C的一个焦点为F(,0),对应于这个焦点的准线方程为x=-.(1)写出抛物线C的方程;(2)过F点的直线与曲线C交于A, B两点,O点为坐标原点,求AOB重心G的轨迹方程;(3)点P是抛物线C上的动点,过点P作圆(x
10、-3)2+y2=2的切线,切点分别是M,N.当P点在何处时,|MN|的值最小?求出|MN|的最小值.解:(1)抛物线方程为:y2=2x. (4分)(2)当直线不垂直于x轴时,设方程为y=k(x-),代入y2=2x,得:k2x2-(k2+2)x+.设A(x1,y1),B(x2,y2),则x1+x2=,y1+y2=k(x1+x2-1)=.设AOB的重心为G(x,y)则,消去k得y2=为所求, (6分)当直线垂直于x轴时,A(,1),B(,-1), (8分)AOB的重心G(,0)也满足上述方程.综合得,所求的轨迹方程为y2=, (9分)(3)设已知圆的圆心为Q(3,0),半径r=,依据圆的性质有:|
11、MN|=2. (11分)当|PQ|2最小时,|MN|取最小值,设P点坐标为(x0,y0),则y=2x0.|PQ|2=(x0-3)2+ y= x-4x0+9=(x0-2)2+5,当x0=2,y0=2时,|PQ|2取最小值5,故当P点坐标为(2,2)时,|MN|取最小值. 抛物线专题练习一, 选择题(本大题共10小题,每小题5分,共50分)1假如抛物线y 2=ax的准线是直线x=-1,那么它的焦点坐标为( )A(1, 0)B(2, 0)C(3, 0)D(1, 0)2圆心在抛物线y 2=2x上,且与x轴与该抛物线的准线都相切的一个圆的方程是( )Ax2+ y 2-x-2 y -=0Bx2+ y 2+
12、x-2 y +1=0 Cx2+ y 2-x-2 y +1=0Dx2+ y 2-x-2 y +=03抛物线上一点到直线的距离最短的点的坐标是( )A(1,1)B()CD(2,4)4一抛物线形拱桥,当水面离桥顶2m时,水面宽4m,若水面下降1m,则水面宽为( )AmB 2mC4.5mD9m5平面内过点A(-2,0),且与直线x=2相切的动圆圆心的轨迹方程是( )A y 2=2xB y 2=4xCy 2=8x Dy 2=16x6抛物线的顶点在原点,对称轴是x轴,抛物线上点(-5,m)到焦点距离是6,则抛物线的方程是( )A y 2=-2xB y 2=-4xC y 2=2xD y 2=-4x或y 2=
13、-36x7过抛物线y 2=4x的焦点作直线,交抛物线于A(x1, y 1) ,B(x2, y 2)两点,假如x1+ x2=6,那么|AB|=( )A8B10C6 D48把与抛物线y 2=4x关于原点对称的曲线按向量a平移,所得的曲线的方程是( )ABCD 9过点M(2,4)作与抛物线y 2=8x只有一个公共点的直线l有( )A0条B1条C2条D3条10过抛物线y =ax2(a0)的焦点F作始终线交抛物线于P, Q两点,若线段PF与FQ的长分别是p, q,则等于( )A2aB C4a D 二, 填空题(本大题共4小题,每小题6分,共24分)11抛物线y 2=4x的弦AB垂直于x轴,若AB的长为4
14、,则焦点到AB的距离为 12抛物线y =2x2的一组斜率为k 的平行弦的中点的轨迹方程是 13P是抛物线y 2=4x上一动点,以P为圆心,作与抛物线准线相切的圆,则这个圆确定经过一个定点Q,点Q的坐标是 14抛物线的焦点为椭圆的左焦点,顶点在椭圆中心,则抛物线方程为 三, 解答题(本大题共6小题,共76分)15已知动圆M与直线y =2相切,且与定圆C:外切,求动圆圆心M的轨迹方程(12分)16已知抛物线的顶点在原点,对称轴是x轴,抛物线上的点M(3,m)到焦点的距离等于5,求抛物线的方程与m的值(12分)17动直线y =a,与抛物线相交于A点,动点B的坐标是,求线段AB中点M的轨迹的方程(12
15、分)19如图,直线l1与l2相交于点M,l1l2,点Nl1以A, B为端点的曲线段C上的任一点到l2的距离与到点N的距离相等若AMN为锐角三角形,|AM|=,|AN|=3,且|BN|=6建立适当的坐标系,求曲线段C的方程(14分)20已知抛物线过动点M(,0)且斜率为1的直线与该抛物线交于不同的两点A, B,()求的取值范围;()若线段AB的垂直平分线交轴于点N,求面积的最大值(14分)参考答案一选择题(本大题共10小题,每小题5分,共50分)题号12345678910答案ADABCBACCC二填空题(本大题共4小题,每小题6分,共24分)112 12 13(1,0) 14 三, 解答题(本大
16、题共6题,共76分)15(12分)解析:设动圆圆心为M(x,y),半径为r,则由题意可得M到C(0,-3)的距离与到直线y=3的距离相等,由抛物线的定义可知:动圆圆心的轨迹是以C(0,-3)为焦点,以y=3为准线的一条抛物线,其方程为16 (12分)解析:设抛物线方程为,则焦点F(),由题意可得 ,解之得或, 故所求的抛物线方程为,17(12分)解析:设M的坐标为(x,y),A(,),又B得 消去,得轨迹方程为,即18(12分)解析:如图建立直角坐标系,设桥拱抛物线方程为,由题意可知,B(4,-5)在抛物线上,所以,得, 当船面两侧与抛物线接触时,船不能通航,设此时船面宽为AA,则A(),由得
17、,又知船面露出水面上部分高为075米,所以=2米19(14分) 解析:如图建立坐标系,以l1为x轴,MN的垂直平分线为y轴,点O为坐标原点由题意可知:曲线C是以点N为焦点,以l2为准线的抛物线的一段,其中A, B分别为C的端点设曲线段C的方程为, 其中分别为A, B的横坐标, 所以, 由,得联立解得将其代入式并由p0解得,或因为AMN为锐角三角形,所以,故舍去 p=4,由点B在曲线段C上,得综上得曲线段C的方程为20(14分) 解析:()直线的方程为,将,得 设直线与抛物线两个不同交点的坐标为, ,则 又, , 解得 ()设AB的垂直平分线交AB于点Q,令坐标为,则由中点坐标公式,得 又 为等腰直角三角形,即面积最大值为Tesoon 天星版权天星om权tesoon天星om权天星om权Tesoon 天星版权tesoontesoontesoon天星第 15 页