《六年级数学下册重点知识.docx》由会员分享,可在线阅读,更多相关《六年级数学下册重点知识.docx(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、六年级数学下册重点学问第一单元 负数1、负数的定义:在正数前面加上“-”就是负数。2、“0” 既不是正数也不是负数, 它是正数与负数的分界点。 3、直线上0右边的数是正数,左边的数是负数,这样的直线叫做数轴。 4、数轴的要素:正方向(箭头表示)、原点(0刻度)、单位长度(刻度)。5、正方向:根据题意要求确定正方向,一般以向上或向右为正方向。6、在数轴上,从左到右的依次就是数从小到大的依次。7、在数轴上越靠右边的数越大,越靠左边的数越小;8、负数比拟大小,不考虑负号,数字局部大的数反而小;9、0大于全部的负数,小于全部的正数。负数0正数全部的正数都大于负数;全部的负数都小于正数第二单元 百分数1
2、、折扣: 商店有时降价出售商品,叫做打折。 几折就表示非常之几,也就是百分之几十。 折扣=现价 原价 2、成数 : 成数表示一个数是另一个数的非常之几,统称“几成”。 例如:“一成”就是非常之一,也就是10。 “三成五”就是非常之三点五,也就是35。3、 税率 : 纳税就是把根据国家各种税法的有关规定,根据肯定的比率把集体或个人收入的一局部缴纳给国家。 缴纳的税款叫应纳税款。 应纳税额与各种收入的(销售额、营业额、应纳税所得额 )的比率叫做税率。 应纳税额 = 某种收入 税率 4、存入银行的钱叫做本金。 5、取款时银行多支付的钱叫做利息。 6、利息与本金的比值叫做利率。 利息=本金利率存期 利
3、息税=本金利率存期5% 税后利息=本金利率存期(1-5%) 第三单元 圆柱与圆锥 1、圆柱的特征: (1)底面的特征:圆柱的底面是完全相等的两个圆。 (2个)(2)侧面的特征:圆柱的侧面是一个曲面。 (1个)(3)高的特征:圆柱有多数条高。 (多数条)2、圆柱的高:两个底面之间的间隔 叫做高。3、圆柱的侧面绽开图: 当沿高绽开时绽开图是(长方形); 这个长方形的长等于(圆柱的底面周长),长方形的宽等于(圆柱的高)。这个长方形的面积等于(圆柱的侧面积),因为长方形面积=长宽,所以圆柱的侧面积=底面周长高 当底面周长与高相等时,沿高绽开图是(正方形); 当不沿高绽开时绽开图是(平行四边形或不规则图
4、形)。4、圆柱的侧面积: 圆柱的侧面积=底面的周长高, 用字母表示为:S侧= Ch 利用直径计算: S 侧 dh 利用半径计算:S 侧 2rh 5、圆柱的外表积: 圆柱的外表积=侧面积+底面积2。 即S表= S侧 + S底2 S表= 2rh+2r 6、圆柱外表积在实际中的应用: 无盖水桶的外表积=侧面积+一个底面积 油桶的外表积=侧面积+两个底面积 烟囱通风管的外表积=侧面积 只求侧面积:灯罩、排水管、漆柱、通风管、压路机、卫生纸中轴、薯片盒包装 侧面积+一个底面积:玻璃杯、水桶、笔筒、帽子、游泳池 侧面积+两个底面积:油桶、米桶、罐桶类 7、圆柱的体积:V= S h h=VS S=Vh 已知
5、r ,求V, V= r h 已知d ,求V, V= (d2) h 已知C ,求V, V= (C2) h 8、 把一个圆柱体切分成若干份拼成一个近似的长方体,在这个过程中,形 状发生了改变,体积没有发生改变。外表积增加了2rh. 9、圆锥的特征: (1)底面的特征:圆锥的底面一个圆。 (2)侧面的特征:圆锥的侧面是一个曲面。 (3)高的特征:圆锥有一条高。 10、圆锥的高:从圆锥的顶点究竟面圆心的间隔 是圆锥的高。 11、圆锥的体积:圆柱的体积等于与它等底等高的圆锥体积的3倍,反之圆锥的体积等于与它等底等高的圆柱体积的三分之一。 V锥= 1/3 V柱=1/3 Sh V锥= 1/3 rh V锥=
6、1/3 (d2)h V锥= 1/3 (C2)h 12、圆柱与圆锥的关系: (1)与圆柱等底等高的圆锥体积是圆柱体积的三分之一。 (2)体积与高相等的圆锥与圆柱(等底等高)之间,圆锥的底面积是圆柱的三倍。 (3)体积与底面积相等的圆锥与圆柱(等低等高)之间,圆锥的高是圆柱的三倍。 13、生活中的圆锥:沙堆、漏斗、帽子。 第四单元 比例1、比的意义 (1)两个数相除又叫做两个数的比 (2)“:”是比号,读作“比”。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。 (3)同除法比拟,比的前项相当于被除数,后项相当于除数,比值相当于商。 (4)比值通常用分数表示
7、,也可以用小数表示,有时也可能是整数。 (5)比的后项不能是零。 (6)根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。2、比的根本性质:比的前项与后项同时乘上或者除以一样的数(0除外),比值不变,这叫做比的根本性质。3、求比值与化简比:求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。根据比的根本性质可以把比化成最简洁的整数比。它的结果必需是一个最简比,即前、后项是互质的数。4、按比例安排:在农业消费与日常生活中,经常须要把一个数量根据肯定的比来进展安排。这种安排的方法通常叫做按比例安排。方法:首先求出各局部占总量的几分之几,
8、然后求出总数的几分之几是多少。5、比例的意义:表示两个比相等的式子叫做比例。组成比例的四个数,叫做比例的项。两端的两项叫做外项,中间的两项叫做内项。6、比例的根本性质:在比例里,两个外项的积等于两个两个内项的积。这叫做比例的根本性质。7、比与比例的区分(1)比表示两个量相除的关系,它有两项(即前、后项);比例表示两个比相等的式子,它有四项(即两个内项与两个外项)。(2)比有根本性质,它是化简比的根据;比例也有根本性质,它是解比例的根据。8、成正比例的量:两种相关联的量,一种量改变,另一种量也随着改变,假如这两种量中相对应的两个数的比值(也就是商)肯定,这两种量就叫做成正比例的量,他们的关系叫做
9、正比例关系。用字母表示x/y=k(肯定)9、成反比例的量:两种相关联的量,一种量改变,另一种量也随着改变,假如这两种量中相对应的两个数的积肯定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。用字母表示xy=k(肯定)10、推断两种量成正比例还是成反比例的方法:关键是看这两个相关联的量中相对就的两个数的商肯定还是积肯定,假如商肯定,就成正比例;假如积肯定,就成反比例。11、比例尺:一幅图的图上间隔 与实际间隔 的比,叫做这幅图的比例尺。12、比例尺的分类:(1)数值比例尺与线段比例尺(2)缩小比例尺与放大比例尺13、比例尺=图上间隔 :实际间隔 图上间隔 =实际间隔 比例尺实际间隔 =图
10、上间隔 比例尺(计算时图距与实距单位必需统一)14、应用比例尺画图的步骤:(1)写出图的名称、(2)确定比例尺;(3)根据比例尺求出图上间隔 ;(4)画图(画出单位长度)(5)标出实际间隔 ,写清地点名称(6)标出比例尺15、图形的放大与缩小:形态一样,大小不同。16、用比例解决问题:根据问题中的不变量找出两种相关联的量,并正确推断这两种相关联的量成什么比例关系,并根据正、反比例关系式列出相应的方程并求解。17、常见的数量关系式:单价数量=总价单产量数量=总产量速度时间=路程工效工作时间=工作总量第五单元鸽巢问题(抽屉原理)1、物体数抽屉数=商余数至少数=商+12、物体数抽屉数=商至少数=商典
11、型题:1、一个圆柱的侧面绽开是一个正方形,它的高是底面直径的()倍。2、圆柱的底面半径扩大n倍,高不变,侧面积扩大n倍,体积扩大()倍。3、圆柱的底面半径扩大n倍,高也扩大n倍,侧面积扩大()倍,体积扩大()。4、圆柱的底面半径扩大n倍,高缩小n倍,侧面积不变,体积扩大()倍。5、一个圆柱与它等底等高的圆锥体积之与是48立方厘米,这个圆柱的体积是()立方厘米,圆锥的体积是()立方厘米6、一个圆柱与它等底等高的圆锥体积之差是24立方分米,这个圆柱的体积是()立方分米,圆锥的体积是()立方分米。7、一个圆柱与一个圆锥,体积相等,底面积也相等,圆柱的高是2厘米,圆锥的高是()厘米。8、一个圆柱与一个
12、圆锥体积相等,高也相等,圆柱的底面积是4平方分米,圆锥的底面积是()平方分米。9、一个圆锥与一个圆柱的底面积相等,体积的比是1:6。假如圆锥的高是3.6厘米,圆柱的高是()厘米,假如圆柱的高是3.6厘米,圆锥的高是()厘米。10、一个圆柱体,把它的高截短3厘米,它的外表积削减94.2平方厘米,这个圆柱的体积削减了()立方厘米。11、把一个底面半径是5cm,高是10cm的圆柱体切削成若干等份,拼成一个近似的长方形,在这个切拼过程中,()没有发生改变,外表积增加了()平方厘米。12、一个圆锥的体积是12立方米,底面积是9平方米,高是几米?13、思索题:一个圆柱体与一个圆锥体积相等,底面半径的比是3:2,圆锥与圆柱高的比是()14、一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时,甲乙两地之间的马路长多少千米?(用比例的学问解答)15、一辆汽车从甲地开往乙地,每小时行70千米,5小时到达,假如要4小时到达,每小时须要行驶多少千米?(用比例的学问解答)16、一块长方形试验田,长80米,宽60米,用1:2000的比例尺画出这块试验田的平面图。17、用面积是15平方厘米的方砖给教室铺地,须要2000块,假如改用面积25平方厘米的方砖铺地,须要多少块砖?(用比例解)18、修一条马路,总长12千米,开工3天修了1.5千米。照这样计算,修完这条马路还要多少天?(用比例解)