《高中数学函数知识点总结(经典收藏).docx》由会员分享,可在线阅读,更多相关《高中数学函数知识点总结(经典收藏).docx(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、高中数学函数学问点总结 1. 对于集合,肯定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。 中元素各表示什么? A表示函数y=lgx的定义域,B表示的是值域,而C表示的却是函数上的点的轨迹2 进展集合的交、并、补运算时,不要遗忘集合本身和空集的特殊状况 留意借助于数轴和文氏图解集合问题。 空集是一切集合的子集,是一切非空集合的真子集。 明显,这里很简洁解出A=-1,3.而B最多只有一个元素。故B只能是-1或者3。依据条件,可以得到a=-1,a=1/3. 但是, 这里千万当心,还有一个B为空集的状况,也就是a=0,不要把它搞遗忘了。3. 留意下列性质: 要知道它的来历:若B为A的子集
2、,则对于元素a1来说,有2种选择(在或者不在)。同样,对于元素a2, a3,an,都有2种选择,所以,总共有种选择, 即集合A有个子集。当然,我们也要留意到,这种状况之中,包含了这n个元素全部在何全部不在的状况,故真子集个数为,非空真子集个数为 (3)德摩根定律:有些版本可能是这种写法,遇到后要可以看懂4. 你会用补集思想解决问题吗?(解除法、间接法) 的取值范围。留意,有时候由集合本身就可以得到大量信息,做题时不要错过; 如告知你函数f(x)=ax2+bx+c(a0) 在上单调递减,在上单调递增,就应当立刻知道函数对称轴是x=1.或者,我说在上 ,也应当立刻可以想到m,n事实上就是方程 的2
3、个根5、熟识命题的几种形式、 命题的四种形式及其互相关系是什么? (互为逆否关系的命题是等价命题。) 原命题及逆否命题同真、同假;逆命题及否命题同真同假。6、熟识充要条件的性质(高考常常考) 满意条件,满意条件,若 ;则是的充分非必要条件;若 ;则是的必要非充分条件;若 ;则是的充要条件;若 ;则是的既非充分又非必要条件;7. 对映射的概念理解吗?映射f:AB,是否留意到A中元素的随意性和B中及之对应元素的唯一性,哪几种对应能构成映射?(一对一,多对一,允许B中有元素无原象。)留意映射个数的求法。如集合A中有m个元素,集合B中有n个元素,则从A到B的映射个数有nm个。如:若,;问:到的映射有
4、个,到的映射有 个;到的函数有 个,若,则到的一一映射有 个。函数的图象及直线交点的个数为 个。 8. 函数的三要素是什么?如何比拟两个函数是否一样? (定义域、对应法则、值域)一样函数的推断方法:表达式一样;定义域一样 (两点必需同时具备) 9. 求函数的定义域有哪些常见类型? 函数定义域求法:l 分式中的分母不为零;l 偶次方根下的数(或式)大于或等于零;l 指数式的底数大于零且不等于一;l 对数式的底数大于零且不等于一,真数大于零。l 正切函数 l 余切函数 l 反三角函数的定义域函数yarcsinx的定义域是 1, 1 ,值域是,函数yarccosx的定义域是 1, 1 ,值域是 0,
5、 ,函数yarctgx的定义域是 R ,值域是.,函数yarcctgx的定义域是 R ,值域是 (0, ) .当以上几个方面有两个或两个以上同时出现时,先分别求出满意每一个条件的自变量的范围,再取他们的交集,就得到函数的定义域。10. 如何求复合函数的定义域? 义域是_。 复合函数定义域的求法:已知的定义域为,求的定义域,可由解出x的范围,即为的定义域。例 若函数的定义域为,则的定义域为 。分析:由函数的定义域为可知:;所以中有。解:依题意知: 解之,得 的定义域为11、函数值域的求法1、干脆视察法对于一些比拟简洁的函数,其值域可通过视察得到。例 求函数y=的值域2、配方法配方法是求二次函数值
6、域最根本的方法之一。例、求函数y=-2x+5,x-1,2的值域。3、判别式法对二次函数或者分式函数(分子或分母中有一个是二次)都可通用,但这类题型有时也可以用其他方法进展化简,不必拘泥在判别式上面下面,我把这一类型的具体写出来,盼望大家可以看懂4、反函数法干脆求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。例 求函数y=值域。5、函数有界性法干脆求函数的值域困难时,可以利用已学过函数的有界性,来确定函数的值域。我们所说的单调性,最常用的就是三角函数的单调性。例 求函数y=,的值域。6、函数单调性法 通常和导数结合,是最近高考考的较多的一个内容例求函数y=(2x10)的值域7、
7、换元法通过简洁的换元把一个函数变为简洁函数,其题型特征是函数解析式含有根式或三角函数公式模型。换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发挥作用。例 求函数y=x+的值域。8 数形结合法其题型是函数解析式具有明显的某种几何意义,如两点的间隔 公式直线斜率等等,这类题目若运用数形结合法,往往会更加简洁,一目了然,赏心悦目。例:已知点P(x.y)在圆x2+y2=1上, 例求函数y=+的值域。解:原函数可化简得:y=x-2+x+8 上式可以看成数轴上点P(x)到定点A(2),B(-8)间的间隔 之和。由上图可知:当点P在线段AB上时,y=x-2+x+8=AB=10当点P在线段AB的延
8、长线或反向延长线上时,y=x-2+x+8AB=10故所求函数的值域为:10,+)例求函数y=+ 的值域解:原函数可变形为:y=+ 上式可看成x轴上的点P(x,0)到两定点A(3,2),B(-2,-1)的间隔 之和,由图可知当点P为线段及x轴的交点时, y=AB=,故所求函数的值域为,+)。注:求两间隔 之和时,要将函数 9 、不等式法利用根本不等式a+b2,a+b+c3(a,b,c),求函数的最值,其题型特征解析式是和式时要求积为定值,解析式是积时要求和为定值,不过有时需要用到拆项、添项和两边平方等技巧。例:倒数法有时,干脆看不出函数的值域时,把它倒过来之后,你会发觉另一番境况例 求函数y=的
9、值域多种方法综合运用总之,在具体求某个函数的值域时,首先要细致、细致视察其题型特征,然后再选择恰当的方法,一般优先考虑干脆法,函数单调性法和根本不等式法,然后才考虑用其他各种特殊方法。12. 求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗? 切记:做题,特殊是做大题时, 肯定要留意附加条件,如定义域、单位等东西要记得协商,不要犯我当年的错误,及到手的满分失之交臂 13. 反函数存在的条件是什么? (一一对应函数) 求反函数的步骤驾驭了吗? (反解x;互换x、y;注明定义域) 在更多时候,反函数的求法只是在选择题中出现,这就为我们这些喜爱偷懒的人供应了大便利。请看这个例题:(200
10、4.全国理)函数的反函数是( B )Ay=x22x+2(x1)By=x22x+2(x1)Cy=x22x (x=1. 解除选项C,D.如今看值域。原函数至于为y=1,则反函数定义域为x=1, 答案为B.我题目已经做完了, 似乎没有动笔(除非你拿来写*书)。思路能不能明白呢?14. 反函数的性质有哪些? 反函数性质:1、 反函数的定义域是原函数的值域 (可扩展为反函数中的x对应原函数中的y)2、 反函数的值域是原函数的定义域(可扩展为反函数中的y对应原函数中的x)3、 反函数的图像和原函数关于直线=x对称(难怪点(x,y)和点(y,x)关于直线y=x对称 互为反函数的图象关于直线yx对称; 保存了
11、原来函数的单调性、奇函数性; 由反函数的性质,可以快速的解出许多比拟费事的题目,如(04. 上海春季高考)已知函数,则方程的解_.15 . 如何用定义证明函数的单调性? (取值、作差、判正负)推断函数单调性的方法有三种:(1)定义法:依据定义,设随意得x1,x2,找出f(x1),f(x2)之间的大小关系可以变形为求的正负号或者及1的关系(2)参照图象:若函数f(x)的图象关于点(a,b)对称,函数f(x)在关于点(a,0)的对称区间具有一样的单调性; (特例:奇函数)若函数f(x)的图象关于直线xa对称,则函数f(x)在关于点(a,0)的对称区间里具有相反的单调性。(特例:偶函数)(3)利用单
12、调函数的性质:函数f(x)及f(x)c(c是常数)是同向改变的函数f(x)及cf(x)(c是常数),当c0时,它们是同向改变的;当c0时,它们是反向改变的。假如函数f1(x),f2(x)同向改变,则函数f1(x)f2(x)和它们同向改变;(函数相加)假如正值函数f1(x),f2(x)同向改变,则函数f1(x)f2(x)和它们同向改变;假如负值函数f1(2)及f2(x)同向改变,则函数f1(x)f2(x)和它们反向改变;(函数相乘)函数f(x)及在f(x)的同号区间里反向改变。若函数u(x),x,及函数yF(u),u(),()或u(),()同向改变,则在,上复合函数yF(x)是递增的;若函数u(
13、x),x,及函数yF(u),u(),()或u(),()反向改变,则在,上复合函数yF(x)是递减的。(同增异减)若函数yf(x)是严格单调的,则其反函数xf1(y)也是严格单调的,而且,它们的增减性一样。f(g)g(x)fg(x)f(x)+g(x)f(x)*g(x) 都是正数增增增增增增减减/减增减/减减增减减 )16. 如何利用导数推断函数的单调性? 值是( ) A. 0B. 1C. 2D. 3 a的最大值为3)17. 函数f(x)具有奇偶性的必要(非充分)条件是什么? (f(x)定义域关于原点对称) 留意如下结论: (1)在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;
14、一个偶函数及奇函数的乘积是奇函数。 推断函数奇偶性的方法一、 定义域法一个函数是奇(偶)函数,其定义域必关于原点对称,它是函数为奇(偶)函数的必要条件.若函数的定义域不关于原点对称,则函数为非奇非偶函数.二、 奇偶函数定义法在给定函数的定义域关于原点对称的前提下,计算,然后依据函数的奇偶性的定义推断其奇偶性.三、 复合函数奇偶性f(g)g(x)fg(x)f(x)+g(x)f(x)*g(x)奇奇奇奇偶奇偶偶非奇非偶奇偶奇偶非奇非偶奇偶偶偶偶偶18. 你熟识周期函数的定义吗? 函数,T是一个周期。) 我们在做题的时候,常常会遇到这样的状况:告知你f(x)+f(x+t)=0,我们要立刻反响过来,这时
15、说这个函数周期2t. 推导:,同时可能也会遇到这种样子:f(x)=f(2a-x),或者说f(a-x)=f(a+x).其实这都是说同样一个意思:函数f(x)关于直线对称, 对称轴可以由括号内的2个数字相加再除以2得到。比方,f(x)=f(2a-x),或者说f(a-x)=f(a+x)就都表示函数关于直线x=a对称。 如: 19. 你驾驭常用的图象变换了吗? 联想点(x,y),(-x,y) 联想点(x,y),(x,-y) 联想点(x,y),(-x,-y) 联想点(x,y),(y,x) 联想点(x,y),(2a-x,y) 联想点(x,y),(2a-x,0) (这是书上的方法,虽然我从来不用, 但可能大
16、家接触最多,我还是写出来吧。对于这种题目,其实根本不用这么费事。你要推断函数y-b=f(x+a)怎么由y=f(x)得到,可以干脆令y-b=0,x+a=0,画出点的坐标。 看点和原点的关系,就可以很直观的看出函数平移的轨迹了。) 留意如下“翻折”变换: 19. 你娴熟驾驭常用函数的图象和性质了吗? (k为斜率,b为直线及y轴的交点) 的双曲线。 应用:“三个二次”(二次函数、二次方程、二次不等式)的关系二次方程求闭区间m,n上的最值。 求区间定(动),对称轴动(定)的最值问题。 一元二次方程根的分布问题。 由图象记性质! (留意底数的限定!) 利用它的单调性求最值及利用均值不等式求最值的区分是什
17、么?(均值不等式肯定要留意等号成立的条件)20. 你在根本运算上常出现错误吗? 21. 如何解抽象函数问题? (赋值法、构造变换法) (对于这种抽象函数的题目,其实简洁得都可以干脆用死记了1、 代y=x,2、 令x=0或1来求出f(0)或f(1)3、 求奇偶性,令y=x;求单调性:令x+y=x1 几类常见的抽象函数 1. 正比例函数型的抽象函数 f(x)kx(k0)-f(xy)f(x)f(y)2. 幂函数型的抽象函数 f(x)xa-f(xy) f(x)f(y);f()3. 指数函数型的抽象函数 f(x)ax- f(xy)f(x)f(y);f(xy)4. 对数函数型的抽象函数f(x)logax(
18、a0且a1)-f(xy)f(x)f(y);f() f(x)f(y)5. 三角函数型的抽象函数f(x)tgx- f(xy)f(x)cotx- f(xy)例1已知函数f(x)对随意实数x、y均有f(xy)f(x)f(y),且当x0时,f(x)0,f(1) 2求f(x)在区间2,1上的值域.分析:先证明函数f(x)在R上是增函数(留意到f(x2)f(x2x1)x1f(x2x1)f(x1);再依据区间求其值域.例2已知函数f(x)对随意实数x、y均有f(xy)2f(x)f(y),且当x0时,f(x)2,f(3) 5,求不等式 f(a22a2)0,xN;f(ab) f(a)f(b),a、bN;f(2)4
19、.同时成立?若存在,求出f(x)的解析式,若不存在,说明理由.分析:先猜出f(x)2x;再用数学归纳法证明.例6设f(x)是定义在(0,)上的单调增函数,满意f(xy)f(x)f(y),f(3)1,求:(1) f(1);(2) 若f(x)f(x8)2,求x的取值范围.分析:(1)利用313;(2)利用函数的单调性和已知关系式.例7设函数y f(x)的反函数是yg(x).假如f(ab)f(a)f(b),那么g(ab)g(a)g(b)是否正确,试说明理由.分析:设f(a)m,f(b)n,则g(m)a,g(n)b,进而mnf(a)f(b) f(ab)f g(m)g(n).例8已知函数f(x)的定义域
20、关于原点对称,且满意以下三个条件: x1、x2是定义域中的数时,有f(x1x2); f(a) 1(a0,a是定义域中的一个数); 当0x2a时,f(x)0. 试问:(1) f(x)的奇偶性如何?说明理由;(2) 在(0,4a)上,f(x)的单调性如何?说明理由. 分析:(1)利用f (x1x2) f (x1x2),断定f(x)是奇函数;(3) 先证明f(x)在(0,2a)上是增函数,再证明其在(2a,4a)上也是增函数. 对于抽象函数的解答题,虽然不行用特殊模型代替求解,但可用特殊模型理解题意.有些抽象函数问题,对应的特殊模型不是我们熟识的根本初等函数.因此,针对不同的函数要进展适当变通,去寻
21、求特殊模型,从而更好地解决抽象函数问题. 例9已知函数f(x)(x0)满意f(xy)f(x)f(y),(1) 求证:f(1)f(1)0;(2) 求证:f(x)为偶函数;(3) 若f(x)在(0,)上是增函数,解不等式f(x)f(x)0.分析:函数模型为:f(x)loga|x|(a0)(1) 先令xy1,再令xy 1;(2) 令y 1;(3) 由f(x)为偶函数,则f(x)f(|x|).例10已知函数f(x)对一实在数x、y满意f(0)0,f(xy)f(x)f(y),且当x0时,f(x)1,求证:(1) 当x0时,0f(x)1;(2) f(x)在xR上是减函数.分析:(1)先令xy0得f(0)1
22、,再令yx;(3) 受指数函数单调性的启发:由f(xy)f(x)f(y)可得f(xy),进而由x1x2,有f(x1x2)1.练习题:1.已知:f(xy)f(x)f(y)对随意实数x、y都成立,则( )(A)f(0)0 (B)f(0)1 (C)f(0)0或1 (D)以上都不对2. 若对随意实数x、y总有f(xy)f(x)f(y),则下列各式中错误的是( )(A)f(1)0 (B)f() f(x) (C)f() f(x)f(y) (D)f(xn)nf(x)(nN)3.已知函数f(x)对一实在数x、y满意:f(0)0,f(xy)f(x)f(y),且当x0时,f(x)1,则当x0时,f(x)的取值范围
23、是( )(A)(1,) (B)(,1)(C)(0,1) (D)(1,)4.函数f(x)定义域关于原点对称,且对定义域内不同的x1、x2都有f(x1x2),则f(x)为( )(A)奇函数非偶函数 (B)偶函数非奇函数(C)既是奇函数又是偶函数 (D)非奇非偶函数5.已知不恒为零的函数f(x)对随意实数x、y满意f(xy)f(xy)2f(x)f(y),则函数f(x)是( )(A)奇函数非偶函数 (B)偶函数非奇函数(C)既是奇函数又是偶函数 (D)非奇非偶函数参考答案:1A 2B 3 C 4A 5B23. 你记得弧度的定义吗?能写出圆心角为,半径为R的弧长公式和扇形面积公式吗? (和三角形的面积公式很相像, 可以比拟记忆.要知道圆锥绽开图面积的求法)