《中考数学第二轮复习全套精讲精练.docx》由会员分享,可在线阅读,更多相关《中考数学第二轮复习全套精讲精练.docx(51页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第二轮复习一 化归思想、专题精讲: 数学思想是数学内容的进一步提炼和概括,是对数学内容的种本质相识,数学方法是施行有关数学思想的一种方式、途径、手段,数学思想方法是数学发觉、创建的关键和动力抓住数学思想方法,擅长快速调用数学思想方法,更是进步解题实力根本之所在因此,在复习时要留意体会教材例题、习题以及中考试题中所表达的数学思想和方法,培育用数学思想方法解决问题的意识 初中数学的主要数学思想是化归思想、分类探讨思想、数形结合思想等本专题特地复习化归思想所谓化归思想就是化未知为、化繁为简、化难为易如将分式方程化为整式方程,将代数问题化为几何问题,将四边形问题转化为三角形问题等实现这种转化的方法有:
2、待定系数法、配方法、整体代人法以及化动为静、由抽象到详细等、典型例题剖析【例1】如图311,反比例函数y=及一次函数y=x+2的图象交于A、B两点 1求 A、B两点的坐标; 2求AOB的面积 解:解方程组 得 所以A、B两点的坐标分别为A2,4B(4,22因为直线y=x+2及y轴交点D坐标是(0, 2, 所以 所以 点拨:两个函数的图象相交,说明交点处的横坐标和纵坐标,既合适于第一个函数,又合适于第二个函数,所以依据题意可以将函数问题转化为方程组的问题,从而求出交点坐标【例2】解方程: 解:令y= x1,那么2 y25 y +2=0 所以y1=2或y2=,即x12或x1= 所以x3或x= 故原
3、方程的解为x3或x= 点拨:很明显,此为解关于x1的一元二次方程假如把方程绽开化简后再求解会特别费事,所以可依据方程的特点,含未知项的都是含有x1所以可将设为y,这样原方程就可以利用换元法转化为含有y的一元二次方程,问题就简洁化了【例3】如图 312,梯形 ABCD中,ADBC,AB=CD,对角线AC、BD相交于O点,且ACBD,AD=3,BC=5,求AC的长 解:过 D作DEAC交BC的延长线于E,那么得AD=CE、AC=DE所以BE=BC+CE=8 因为 ACBD,所以BDDE 因为 AB=CD, 所以ACBD所以GD=DE 在RtBDE中,BD2DE2=BE2 所以BDBE=4,即AC=
4、4. 点拨:此题是依据梯形对角线互相垂直的特点通过平移对角线将等腰梯形转化为直角三角形和平行四边形,使问题得以解决【例4】ABC的三边为a,b,c,且,试推断ABC的形态 解:因为,所以,即: 所以a=b,a=c, b=c 所以ABC为等边三角形 点拨:此题将几何问题转化为代数问题,利用凑完全平方式解决问题【例5】ABC中,BC,AC,ABc假设,如图l,依据勾股定理,那么。假设ABC不是直角三角形,如图2和图3,请你类比勾股定理,试揣测及c2的关系,并证明你的结论 证明:过B作BDAC,交AC的延长线于D。设CD为,那么有 依据勾股定理,得即。 ,。点拨:勾股定理是我们特别熟识的几何学问,对
5、于直角三角形三边具有:的关系,那么锐角三角形、钝角三角形的三边又是怎样的关系呢?我们可以通过作高这条协助线,将一般三角形转化为直角三角形来确定三边的关系.、同步跟踪配套试题:60分 45分钟一、选择题每题 3分,共 18分1|x+y|+x2y2=0,那么 2一次函数y=kxb的图象经过点A0,2和B3,6两点,那么该函数的表达式是 3设一个三角形的三边长为3,l2m,8,那么m的取值范围是 A0m B. 5m 2 C2m 5 Dml4的值为 A、 B、 C、 D、5假设是完全平方式,那么m= A6 B4 C0 D4或06假如表示a、b为两个实数的点在数轴上的位置如图3l8所示,那么化简的结果等
6、于 , A2a B2b C2a D2b二、填空题每题2分,共u分7抛物线的对称轴为直线x=2,且经过点5,4和点1,4那么该抛物线的解析式为_8用配方法把二次函数 y=x23xl写成 y=x+m2n的形式,那么y=_。9假设分式的值为零,那么x=_。10函数y=中自变量x的取值范围是_.11假如长度分别为5、3、x的三条线段能组成一个三角形,那么x的范围是_.12 点1,6在双曲线y= 上,那么k=_三、解答题l题12分,其余每题6分,共30分13解下歹方程组: 1; (2) (3) (4) 14 15如图3l9,在梯形ABCD中,ADBC,AB=CD,B=60,AD=8,BC=14,求梯形A
7、BCD的周长16求直线y=3x1及y=15x的交点坐标。 、同步跟踪稳固试题 100分 80分钟 一、选择题每题3分,共30分1假设,那么xy值等于 A6 B 2 C2 D62二元一次方程组的解是 3是关于x的二元一次方程,那么m、n的值是 4以下各组数中既是方程x2y=4,又是方程2x+2y =1的解的是 A. B. C. D. 5函数中,自变量x的取值范围是 Ax2 Bx0 Cx2 Dx26假设分式值为零,那么x的值是 A0或2 B2 C0 D2或27. 计算:=( ) 8. x,y是实数,且,axy-3x=y,那么a=( ) 9. y=kx+b,x=1时,y=1;x=2,y=-2, 那么
8、k及b的值为 10 假设的解,那么abab的值为 C16 D16二、填空题每题 3分,共21分12假设,那么x+ 2 y=_13两根木棒的长分别为7cm和10cm,要选择第三根木棒,将它们钉成一个三角形框架,那么,第三根木棒长x(cm的范围是_;14 假设,那么=_;15 假设点关于原点对称,那么关于x的二次三项式可以分解为=_.16点在同一条直线上,那么m=_.17 如图3110,把一个面积为1的正方形等分成两个面积为的矩形,接着把面积为的矩形等分成两个面积为的正方形,再把面积为的正方形等分成两个面积为的矩形,如此进展下去试利用图形提示的规律计算:.三、解答题18、19题各10分,20、21
9、 题各8分,22题13分,共49分18:如图3111所示,现有一六边形铁板 ABCDEF,其中ADCDEF=120,AB=10cm,BC=70cm,CD=20cm,DE=4 0cm,求A F和EF的长19:如图3-112所示,在ABC中,E是BC的中点,D在AC边上,假设AC=1且BAC=60,ABC100,DEC=80,求.20 如图 3113所示,正方形边长为山以各边为直径在正方形内画半圆求所围成图形阴影部分的面积。21 ABC的三边长为连续的自然数,且最大角为最小角的二倍,求三边长22 二次函数的图象经过点A3,6并且及x轴相交于点B1,0和点C,顶点为P如图31141求二次函数的解析式
10、;2设D为线段OC上一点,满意DPCBAC,求点D的坐标第二轮复习二 分类探讨、专题精讲: 在数学中,我们常常须要依据探讨对象性质的差异,分各种不同状况予以考察这种分类思索的方法是一种重要的数学思想方法,同时也是一种解题策略 分类是依据数学对象的一样点和差异点,将数学对象区分为不同种类的思想方法,驾驭分类的方法,领悟其本质,对于加深根底学问的理解进步分析问题、解决问题的实力是特别重要的正确的分类必需是周全的,既不重复、也不遗漏 分类的原那么:1分类中的每一部分是互相独立的;2一次分类按一个标准;3分类探讨应逐级进展、典型例题剖析【例1】如图321,一次函数及反比例函数的图象分别是直线AB和双曲
11、线直线AB及双曲线的一个交点为点C,CDx轴于点D,OD2OB4OA4求一次函数和反比例函数的解析式解:由OD2OB4OA4,得A0,1,B2,0,D4,0设一次函数解析式为ykxb 点A,B在一次函数图象上, 即那么一次函数解析式是 点C在一次函数图象上,当时,即C4,1 设反比例函数解析式为 点C在反比例函数图象上,那么,m4故反比例函数解析式是:点拨:解决此题的关键是确定A、B、C、D的坐标。【例2】如图322所示,如图,在平面直角坐标系中,点O1的坐标为4,0,以点O1为圆心,8为半径的圆及x轴交于A、B两点,过点A作直线l及x轴负方向相交成60角。以点O213,5为圆心的圆及x轴相切
12、于点D. 1求直线l的解析式;2将O2以每秒1个单位的速度沿x轴向左平移,同时直线l沿x轴向右平移,当O2第一次及O2相切时,直线l也恰好及O2第一次相切,求直线l平移的速度;3将O2沿x轴向右平移,在平移的过程中及x轴相切于点E,EG为O2的直径,过点A作O2的切线,切O2于另一点F,连结A O2、FG,那么FGA O2的值是否会发生变更?假如不变,说明理由并求其值;假如变更,求其变更范围。解1直线l经过点A12,0,及y轴交于点0,设解析式为ykxb,那么b,k,所以直线l的解析式为. 2可求得O2第一次及O1相切时,向左平移了5秒5个单位如下图。在5秒内直线l平移的间隔 计算:81230
13、,所以直线l平移的速度为每秒6个单位。3提示:证明RtEFGRtAE O2于是可得:所以FGA O2,即其值不变。点拨:因为O2不断挪动的同时,直线l也在进展着挪动,而圆及圆的位置关系有:相离(外离,内含),相交、相切(外切、内切,直线和圆的位置关系有:相交、相切、相离,所以这样以来,我们在分析过程中不能忽视全部的可能状况【例3】如图,在矩形ABCD中,AB=3,BC=2,点A的坐标为(1,0),以CD为直径,在矩形ABCD内作半圆,点M为圆心设过A、B两点抛物线的解析式为y=ax2+bx+c,顶点为点N(1)求过A、C两点直线的解析式;(2)当点N在半圆M内时,求a的取值范围;(3)过点A作
14、M的切线交BC于点F,E为切点,当以点A、F,B为顶点的三角形及以C、N、M为顶点的三角形相像时,求点N的坐标解:(1)过点A、c直线的解析式为y=x(2)抛物线y=ax25x+4a顶点N的坐标为(,a)由抛物线、半圆的轴对称可知,抛物线的顶点在过点M且及CD垂直的直线上,又点N在半圆内,a 2,解这个不等式,得a(3)设EF=x,那么CF=x,BF=2x在RtABF中,由勾股定理得x= ,BF= 【例4】在平面直角坐标系内,点A(2,1),O为坐标原点.请你在坐标轴上确定点P,使得AOP成为等腰三角形.在给出的坐标系中把全部这样的点P都找出来,画上实心点,并在旁边标上P1,P2,Pk,(有k
15、个就标到PK为止,不必写出画法) 解:以A为圆心,OA为半径作圆交坐标轴得和;以O为圆心,OA为半径作圆交坐标轴得,和;作OA的垂直平分线交坐标轴得和。点拨:应分三种状况:OA=OP时;OP=P时;OA=PA时,再找出这三种状况中全部符合条件的P点、同步跟踪配套试题60分 45分钟一、选择题每题 3分,共 15分1假设等腰三角形的一个内角为50那么其他两个内角为 A500 ,80o B650, 650 C500 ,650 D500,800或 650,6502假设 A5或1 B5或1; C5或1 D5或13等腰三角形的一边长为3cm,周长是13cm,那么这个等腰三角形的腰长是 A5cm B.3c
16、m C5cm或3cm D不确定4假设O的弦 AB所对的圆心角AOB=60,那么弦 AB所对的圆周角的度数为 A300 B、600 C1500 D300或 15005一次函数y=kx+b,当3xl时,对应的y值为ly9, 那么kb值为 A14 B6 C4或21 D.6或14二、填空题每题3分,共15分6_. 7O的半径为5cm,AB、CD是O的弦,且 AB=8cm,CD=6cm,ABCD,那么AB及CD之间的间隔 为_.8矩形一个角的平分线分矩形一边为1cm和3 cm两部分,那么这个矩形的面积为_.9O1和O2相切于点P,半径分别为1cm和3cm那么O1和O2的圆心距为_.10 假设a、b在互为
17、倒数,b、c互为相反数,m的肯定值为 1,那么的值是_.三、解答题每题10分,共30分11 y=kx3及两坐标轴围成的三角形的面积为 24,求其函数解析式12 解关于x的方程13 :如图328所示,直线切O于点C,AD为O的随意一条直径,点B在直线上,且BAC=CA D(A D及AB不在一条直线上),试推断四边形ABCO为怎样的特别四边形?、同步跟踪稳固试题10分 60分钟 一、选择题每题4分,共20分1等腰三角形的两边长分别为5和6,那么这个三角形的周长是 A16 B16或 17 C.17 D17或 182的值为 3假设值为 A2 B2 C2或2 D2或2或04假设直线及两坐标轴围成的三角形
18、的面积是5,那么b的值为 5在同一坐标系中,正比例函数及反比例函数的图象的交点的个数是 A0个或2个 Bl个 C2个 D3个二、填空题每题4分,共24分6点P2,0,假设x轴上的点Q到点P的间隔 等于2,那么点Q的坐标为_7两圆内切,一个圆的半径是3,圆心距是2,那么另一个圆的半径是_8等腰三角形的一个内角为70,那么其预角为_9要把一张面值为10元的人民币换成零钱,现有足够的面值为2元、1元的人民币,那么有_种换法10 等腰三角形一腰上的中线将它的周长分为9和12两部分,那么腰长为,底边长为_11 矩形ABCD,AD=3,AB=2,那么以矩形的一边所在直线为轴旋转一周所得到的圆柱的外表积为_
19、.三、解答题56分128分化简.139分抛物线 及y轴交点到原点的间隔 为3,且过点1,5,求这个函数的解析式1413分关于 x的方程. 当k为何值时,此方程有实数根; 假设此方程的两实数根x1,x2满意,求k的值15(13分)抛物线经过点A (1,0) 求b的值; 设P为此抛物线的顶点,Ba,0a1为抛物线上的一点,Q是坐标平面内的点假如以A、B、P、Q为顶点的四边形为平行四边形,试求线段PQ的长1613分矩形的长大于宽的2倍,周长为12,从它的一个顶点,作一条射线,将矩形分成一个三角形和一个梯形,且这条射线及矩形一边所成的角的正切值等于,设梯形的面积为S,梯形中较短的底的长为x,试写出梯形
20、面积S关于x的函数关系式,并指出自变量x的取值范围 第二轮复习三 数形结合、专题精讲: 数学家华罗庚说得好:“数形结合百般好,隔离分家万事休,几何代数统一体,恒久联络莫别离几何图形的形象直观,便于理解,代数方法的一般性,解题过程的机械化,可操作性强,便于把握,因此数形结合思想是数学中重要的思想方法所谓数形结合就是依据数学问题的题设和结论之间的内在联络,既分析其数量关系,又提示其几何意义使数量关系和几何图形奇妙地结合起来,并充分地利用这种结合,探求解决问题的思路,使问题得以解决的思索方法、典型例题剖析【例1】某公司推销一种产品,设x件是推销产品的数量,y元是推销费,图331已表示了公司每月付给推
21、销员推销费的两种方案,看图解答以下问题: 1求y1及y2的函数解析式; 2说明图中表示的两种方案是如何付推销费的? 3果你是推销员,应如何选择付费方案? 解:1y1=20x,y2=10x+300 2y1是不推销产品没有推销费,每推销10件产品得推销费200元,y2是保底工资300元,每推销 10件产品再提成100元 3假设业务实力强,平均每月保证推销多于30件时,就选择y1的付费方案;否那么,选择y2的付费方案点拨:图象在上方的说明它的函数值较大,反之较小,当然,两图象相交时,说明在交点处的函数值是相等的.【例2】某农场种植一种蔬菜,销售员张平依据往年的销售状况,对今年这种蔬菜的销售价格进展了
22、预料,预料状况如图332,图中的抛物线部分表示这种蔬菜销售价及月份之间的关系,视察图象,你能得到关于这种蔬菜销售状况的哪些信息?答题要求:1请供应四条信息;2不必求函数的解析解:12月份每千克销售价是35元;7对月份每千克销售价是05元;3l月到7月的销售价逐月下降;47月到12月的销售价逐月上升;52月及7月的销售差价是每千克3元;67月份销售价最低,1月份销售价最高;76月及8月、5月及9月、4月及10 月、3月及11 月,2月及12 月的销售价分别一样 点拨:可以运用二次函数的性质:增减性、对称性最大小值等,得出多个结论【例3】某报社为理解读者对本社一种报纸四个版面的喜爱状况,对读者作了
23、一次问卷调查,要求读者选出自己最喜爱的一个版面,将所得数据整理后绘制成了如图3l司所示的条形统计图:请写出从条形统计图中获得的一条信息;请依据条形统计图中的数据补全如图333所示的扇形统计图要求:第二版及第三版相邻人并说明这两幅统计图各有什么特点?请你依据上述数据,对该报社提出一条合理的建议。 解:参与调查的人数为5000人; 说明:只要符合题意,均得总分值 如图335所示: 条形统计图能清晰地表示出喜爱各版面的读者人数扇形统计图能清晰地表示出喜爱各版面的读者人数占所调查的总人数的百分比 说明:第二版、第三版所对应的两个扇形中非公共边不在一条直线上的得0分 如:建议改进第二版的内容,进步文章质
24、量,内容更贴近生活,形式更活泼些 说明:只要意义说到、表达根本正确即可得总分值 点拨。统计分布图在中考中出现的越来越多,而统计图又分为:条形。扇形、折线,从统计图中获得的信息是我们必需驾驭的、同步跟踪配套试题:60分 45分钟一、选择题每题3分,共18分1实数a、b上在数轴上对应位置如图336所示,那么等于 Aa Ba2b Ca Dba2不等式组的解集在数轴上,图337所示表示应是 3如图338所示,阴影部分是一个正方形,那么此正方形的面积为 A8 B64 C16 D32 4某村办工厂今年前5个月消费某种产品的总量 c件关于时间t月的图象如图339所示,那么该厂对这种产品来说 A1月至3月每月
25、消费总量逐月增加,4、5两月消费总量逐月削减; B1月至3月每月消费总量逐月增加,4、5两月消费总量及3月持平; C、1月至3月每月消费总量逐月增加,4、5两月均停顿消费; D、1月至 3月每月消费总量不变,4、5两月均停顿消费。5某人从A地向B地打长途 6分钟,按通话时间收费,3分钟以内收费24元,每加 1分钟加收 1元,那么表示 费y元及通话时间(分之间的关系的图象如图 3310所示,正确的选项是 6、如图3311所示,在RtABC中,C90,AB=13,BC=5,那么以AC为直径的半圆的面积为 A6 B12 C36 D18二、填空题每题3分,共12分7a,b,c是三角形的三条边,那么关于
26、x的一次函数的图象不经过第_限8假设一次函数的图象经过第一、二、四象限时,m的取值范围是_.9假设点P1,a和Q1,,b都在抛物线上,那么线 段PQ的长是_。10 抛物线经过A1,0,B 3,0, C(2,6三点,及y轴的交点为D,那么ABD的面积为_.三、解答题每题10分,共30分11 甲、乙、丙三人共解出100道数学题每人都解出了其中的60道题,将其中只有1人解出的题叫难题,三人都解出的题叫简洁题试问:难题多还是简洁题多?多的比少的多几道?12 如图3312所示,AOB为正三角形,点A、B的坐标分别为,求a,b的值及AOB的面积 13 在直径为AB的半圆内,画出一块三角形区域,使三角形的一
27、边为AB,顶点C在半圆周上,其他两边分别为6和8现要建立一个内接于ABC的矩形水池 DEFN,其中,DE在 AB上,如图3313所示的设计方案是使AC=8,BC=6 求ABC中AB边上的高h; 设DN=x,当x取何值时,水池DEFN的面积最大? 实际施工时,发觉在AB上距B点l85处有一棵大树问:这棵大树是否位于最大矩形水池的边上?假如在,为爱护大树,请设计出另外的方案,使内接于满意条件的三角形中欲建的最大矩形水池能避开大树、同步跟踪稳固试题80分 70分钟一、选择题每题4分,共36分1实数a、b、c在数轴上的位置如图3314 所示,化简的结果是 Aac Ba2b+c Ca+2b c Dac2
28、假设直线y=mx+4,x=l,x=4和x轴围成的直角梯形的面积是7,那么m的值是 A B C D23如图3315中,每个正方形网格都是由四个边长为1的小正方形组成,其中阴影部分面积为的是 4如图3316所示,在平面直角坐标系中,直线AB及x轴的夹角为60,且点A坐标为2,0,点B在x轴上方,设A B=a,那么点B的横坐标为 A2 B2 C2 D2+ 5实数a、b、c在数轴上对应点位置如图3317所示,下式中正确的选项是 Ab+c0 Ba+bac Cacbc Dabac 6在边长为a。的正方形中,挖掉一个边长为b的小正方形(ab)如图3318l,把余下的部分剪拼成一个矩形如图3318,通过计算两
29、个图形阴影部分的面积,验证了一个等式,那么这个等式是 A; B;C; D7关于x的不等式2xa3的解集如图3319所示,那么a的值等于 A0 B1 C1 D28如图3320所示,在反比例函数y= (k0的图象上有三点A、B、C,过这三点分别向x轴、y轴作垂线,过每一点所作的两条垂线及x轴,y轴围成的面积分别为S1,S2,S3,那么 AS1S2S3 BS1S2 S3 CS1S3S2 DS1=S2 =S39如图33211所示,在大房间一面墙壁上,边长为15 cm的正六边形A如图33212所示横排20片和以其一部分所形成的梯形B,三角形C、D上,菱形F等六种瓷砖毫无空隙地排列在一起墙壁高33m,请你
30、细致视察各层瓷砖的排列特点,计算其中菱形F瓷砖需运用 A220片 B200片 C180片 D190片 二、填空题每题4分,共16分10 如图3322所示,在平面直角坐标系中,AOB =150,OAOB=2,那么点A、B的坐标分别是_和_11实数p在数轴上的位置如图3323所示,化简。12直线y1=2x1和y2=x1的图象如图3324所示,依据图象填空 当x_时,y1y2;当x_时,y1=y2;当x_时,y1y2. 方程组的解是_。13 二次函数及一次函数 y2=kx+ mk0的图象相交于点 A2,4,B8,2如图 3325所示,那么能使y1y2成立的x的取值范围是_三、解答题(28分)14 (
31、8分)如图3326,以直角三角形的两直角边为边长所作的正方形A、B的面积分别为9,16,求以斜边为边长的正方形DEFG的面积15 (8分)如图3327所示,有两个同心转盘,现随意转动两转盘,求两转盘静止后恰为如图情形(即大转盘及小转盘的标号相对应的概率_16 (10分如图3328所示,在梯形 ABCD中,BCAD,A= 90,AB=2,BC=3,AD=4,E为AD的中点,F为CD的中点,P为BC上的动点(不及 B、C重合设 BP=x,四边形PEFC的面积为y,求y关于x的函数关系式,并写出x的取 值范围第二轮复习四 怎样解选择题、专题精讲: 选择题是中考试题中必有的固定题型,它具有考察面宽、解
32、法敏捷、评分客观等特点选择题一般由题干题没和选择支选项组成假如题干不是完全陈述句,那么题干加上正确的选择支,就构成了一个真命题;而题干加上错误的选择支,构成的是假命题,错误的选择支也叫干扰支,解选择题的过程就是通过分析、推断、推理用除干扰支,得出正确选项的过程. 选择题的解法一般有七种:1干脆求解比照法:干脆依据选择题的题设,通过计算、推理、推断得出正确选项2解除法:有些选择题可以依据题设条件和有关学问,从4个答案中,解除3个答案,依据答案的唯一性,从而确定正确的答案,这种方法也称为剔除法或淘汰法或挑选法3特别值法:依据命题条件选择题中所探讨的量可以在某个范围内随意取值,这时可以取满意条件的一
33、个或假设干特别值代人进展检验,从而得出正确答案4作图法:有的选择题可通过命题条件的函数关系或几何意义,作出函数的图象或几何图形,借助于图象或图形的直观性从中找出正确答案这种应用“数形结合来解数学选择题的方法,我们称之为“作图法5验证法:干脆将各选择支中的结论代人题设条件进展检验,从而选出符合题意的答案6定义法:运用相关的定义、概念、定理、公理等内容,作出正确选择的一种方法7综合法:为了对选择题快速、正确地作出推断,有时须要综合运用前面介绍的几种方法 解选择题的原那么是既要留意题目特点,充分应用供选择的答案所供应的信息,又要有效地解除错误答案可能造成的于抗,须留意以下几点:1要细致审题;2要大胆
34、揣测;3要当心验证;4先易后难,先简后繁、典型例题剖析【例1】假设半径为3,5的两个圆相切,那么它们的圆心距为 A2 B8 C2或8 D1或4 解:C 点拨:此题可采纳“干脆求解比照法两圆相切分为内切和外切,当两圆内切时,它们的圆心距为:53=2,当两圆外切时,它们的圆心距为:3+5=8【例2】如图341所示,对a、b、c三种物体的重量推断正确的选项是 Aac Bab Cac Dbc 解:C 点拨:依据图形可知:2a=3b,2b=3c,所以ab,bc因此ac,所以选择C【例3】一次函数y=kxk,假设y随x的增大而减小,那么该函数的图象经过 A第一、二、三象限; B第一、二、四象限 C第二、三
35、、四象限; D第一、三、四象限 解:B 点拨:此题可采纳“定义法因为y随x的增大而减小,所以k0因此必过第二、四象限,而k0所以图象及y轴相交在正半轴上,所以图象过第一、二、四象限.【例4】以下函数中,自变量x的取值范围是x2的是 解:B 点拨:此题可采纳“定义法分别计算每个自变量x的取值范围,Ax2; Bx2;C2x2; Dx2通过比较选择B【例5】某闭合电路中,电源电压为定值,电流I(A)及电阻R()成反比例,图342表示的是该电路中电流I及电阻R之间函数关系的图象,那么用电阻R表示电流I的函数解析式为 A、 B、; C、 D、解:本可用定义法,选A.【例6】在ABC中,C=90,假如ta
36、nA=,那么sinB的值等于 解:B 点拨:此题可用“特别值法,在ABC中,C=90,应选B【例7】在中,最简二次根式的个数为 A1个 B2个 C3个D4个 解: B 点拨:比照最简二次根式应满意的两个条件:被开方数的因数是整数,因式是整式;被开方数中不含能开方的因数或因式,运用“定义法可知,此题只有及是最简二次根式,应选B、同步跟踪配套试30分 25分钟一、选择题每题3分,共30分:1在ABC中,A30,B=60,AC=6,那么ABC的外接圆的半径为 A2 B3 C D32假设x1,那么的大小关系是 A B; C D3在ABC中,AB=24,AC=18D是 AC上一点,AD=12,在AB上取
37、一点 E,使得以 A、D、E为顶点的三角形及ABC相像,那么AE的长为 A16 B14 C16或 14 D16或 94假设函数y=是正比例函数,那么常数m的值是 AB C士3 D35如图343所示,某同学把一块三角形的玻璃打碎成了三块,如今要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是 A 带去B带去C带去D带和去6、二次函数y=ax2bxc的图象如图344所示,那么函数y=axb的图象只可能是图345中的 7一个圆台形物体的上底面积是下底面积的1/4,如图346所示放在桌面上,对桌面的压强是200帕,翻转过来对桌面的压强是 A50帕 B80帕 C600帕 D800帕8O的直径为10,弦
38、AB的长为8,M是弦AB上的动点,那么OM的长的取值范围是 A3OM5 B4OM5 C3OM5 D4OM5 9假设二次函数y=ax2c,当x取x1,x2,x1x2时,函数值相等,那么当x取x1,x2时,函数值为 Aac Bac Cc Dc10 假如的值为 A、0 B、 C、 D没有意义、同步跟踪稳固试题10分 60分钟一、选择题每题4分,共100分1假设,那么x的取值范围是 A、x0 B、x2 C、2x0 D 2x02假设的值是 A12 B13 C14 D153如图347所示,四个平面图形,其中既是轴对称图形又是中心对称图形的是 4假如水位下降5m,记作5m,那么水位上升2m,记作 A3m B7m C2m D7m5数轴上的A点到原点的间隔 为3,那么在数轴上到点A的间隔 为2的点