高中数学教案必修三:2.4-线性回归方程(1).docx

上传人:叶*** 文档编号:34928845 上传时间:2022-08-19 格式:DOCX 页数:7 大小:181.46KB
返回 下载 相关 举报
高中数学教案必修三:2.4-线性回归方程(1).docx_第1页
第1页 / 共7页
高中数学教案必修三:2.4-线性回归方程(1).docx_第2页
第2页 / 共7页
点击查看更多>>
资源描述

《高中数学教案必修三:2.4-线性回归方程(1).docx》由会员分享,可在线阅读,更多相关《高中数学教案必修三:2.4-线性回归方程(1).docx(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、教学目的:1. 通过搜集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观相识变量间的相关关系;2. 在两个变量具有线性相关关系时,会在散点图中作出线性直线,会用线性回来方程进展预料;3. 知道最小二乘法的含义,知道最小二乘法的思想,能依据给出的线性回来方程系数公式建立线性回来方程,理解(线性)相关系数的定义教学重点:散点图的画法,回来直线方程的求解方法教学难点:回来直线方程的求解方法教学方法:引导发觉、合作探究 教学过程:一、创设情景,提醒课题客观事物是互相联络的过去探讨的大多数是因果关系,但事实上更多存在的是一种非因果关系比方说:某某同学的数学成果与物理成果,彼此是互相联络的,但不

2、能认为数学是“因”,物理是“果”,或者反过来说 事实上数学与物理成果都是“果”,而真正的“因”是学生的理科学习实力与努力程度所以说,函数关系存在着一种确定性关系,但还存在着另一种非确定性关系相关关系二、学生活动提出问题:两个变量之间的常见关系有几种?(1)确定性的函数关系,变量之间的关系可以用函数表示;(2)相关关系,变量之间有肯定的联络,但不能完全用函数来表示说明:不要认为两个变量间除了函数关系,就是相关关系,事实是,两个变量间可能毫无关系比方地球运行的速度与某个人的行走速度就可认为没有关系某小卖部为了理解热茶销售量与气温之间的关系,随机统计并制作了某6天卖出热茶的杯数与当天气温的比照表:气

3、温/C261813104杯数2假如某天的气温是,你能依据这些数据预料这天小卖部卖出热茶的杯数吗? 从下图可以看出,这些点分布在一条直线的旁边,故可用一个线性函数近似地表示热茶销量与气温之间的关系. 选择怎样的直线近似地表示热茶销量与气温之间的关系? 我们有多种思索方案:(1)选择能反映直线改变的两个点,例如取这两点的直线;(2)取一条直线,使得位于该直线一侧与另一侧的点的个数根本一样;(3)多取几组点,确定几条直线方程,再分别算出各条直线斜率、截距的平均值,作为所求直线的斜率、截距;怎样的直线最好呢三、建构数学1最小平方法: 用方程为的直线拟合散点图中的点,应使得该直线与散点图中的点最接近那么

4、,怎样衡量直线与图中六个点的接近程度呢?我们将表中给出的自变量的六个值带入直线方程,得到相应的六个的值:.这六个值与表中相应的实际值应当越接近越好.所以,我们用类似于估计平均数时的思想,考虑离差的平方与说明: 是直线与各散点在垂直方向(纵轴方向)上的间隔 的平方与,可以用来衡量直线与图中六个点的接近程度,所以,设法取的值,使到达最小值.这种方法叫做最小平方法(又称最小二乘法)(method of least square). 先把看作常数,那么是关于的二次函数.易知,当时, 获得最小值.同理, 把看作常数,那么是关于的二次函数.当时, 获得最小值.因此,当时,取的最小值,由此解得.所求直线方程

5、为.当时,故当气温为时,热茶销量约为杯.2线性相关关系:像这样能用直线方程近似表示的相关关系叫做线性相关关系(liner correlation).3线性回来方程:一般地,设有个视察数据如下: 当使获得最小值时,就称为拟合这对数据的线性回来方程(linear regression equation),该方程所表示的直线称为回来直线上述式子绽开后,是一个关于的二次多项式,应用配方法,可求出访为最小值时的的值即结论:,(*) , 说明:公式(*)的推导比拟困难,这里不作要求四、数学运用例题下表为某地近几年机动车辆数与交通事故数的统计资料,请推断机动车辆数与交通事故数之间是否有线性相关关系,假如具有

6、线性相关关系,求出线性回来方程;假如不具有线性相关关系,说明理由机动车辆数千台951135150180交通事故数千件6.27.57.78.58.79.810.2131下面是我国居民生活污水排放量的一组数据(单位:10 t)试分别估计1996年与2004年我国居民生活污水排放量年份199519961997199819992排放量151189.1194.8203.8220.9227.7232.32.一个工厂在某年里每月产品的总本钱y(单位:万元)与月产量(单位:万件)之间有如下一组数据:x1.081.121.191.281.361.481.591.681.801.871.982.07y2.252.372.402.552.642.752.923.033.143.263.363.50(1)画出散点图;(2)求线性回来方程五、归纳整理,整体相识1对一组数据进展线性回来分析时,应先画出其散点图,看其是否呈直线形,再依系数的计算公式,算出由于计算量较大,所以在计算时应借助技术手段,仔细细致,谨防计算中产生错误2.求线性回来方程的步骤:计算平均数;计算的积,求;计算;将结果代入公式求;用 求;写出回来方程 w.w.w.k.s.5.u.c.o.m

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 初中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁