《高中数学必修15知识点总汇公式大全.docx》由会员分享,可在线阅读,更多相关《高中数学必修15知识点总汇公式大全.docx(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、数学必修1-5常用公式及结论必修1: 一、集合1、含义与表示:(1)集合中元素的特征:确定性,互异性,无序性(2)集合的分类;有限集,无限集 (3)集合的表示法:列举法,描绘法,图示法2、集合间的关系:子集:对随意,都有 ,则称A是B的子集。记作 真子集:若A是B的子集,且在B中至少存在一个元素不属于A,则A是B的真子集, 记作AB 集合相等:若:,则3. 元素与集合的关系:属于 不属于: 空集:4、集合的运算:并集:由属于集合A或属于集合B的元素组成的集合叫并集,记为 交集:由集合A和集合B中的公共元素组成的集合叫交集,记为 补集:在全集U中,由全部不属于集合A的元素组成的集合叫补集,记为5
2、集合的子集个数共有 个;真子集有1个;非空子集有 1个; 6.常用数集:自然数集:N 正整数集: 整数集:Z 有理数集:Q 实数集:R二、函数的奇偶性1、定义: 奇函数 f ( x ) = f ( x ) ,偶函数 f (x ) = f ( x )(留意定义域)2、性质:(1)奇函数的图象关于原点成中心对称图形;(2)偶函数的图象关于y轴成轴对称图形;(3)假如一个函数的图象关于原点对称,那么这个函数是奇函数;(4)假如一个函数的图象关于y轴对称,那么这个函数是偶函数二、函数的单调性1、定义:对于定义域为D的函数f ( x ),若随意的x1, x2D,且x1 x2 f ( x1 ) f ( x
3、 2 ) f ( x1 ) f ( x2 ) 0 f ( x )是增函数 f ( x1 ) f ( x 2 ) f ( x1 ) f ( x2 ) 0 f ( x )是减函数2、复合函数的单调性: 同增异减三、二次函数y = ax2 +bx + c()的性质1、顶点坐标公式:, 对称轴:,最大(小)值:2.二次函数的解析式的三种形式(1)一般式; (2)顶点式;(3)两根式.四、指数与指数函数1、幂的运算法则:(1)a m a n = a m + n ,(2),(3)( a m ) n = a m n (4)( ab ) n = a n b n(5) (6)a 0 = 1 ( a0)(7) (
4、8)(9)2、根式的性质(1).(2)当为奇数时,; 当为偶数时,.4、指数函数y = a x (a 0且a1)的性质:(1)定义域:R ; 值域:( 0 , +) (2)图象过定点(0,1)Y0X1a 10YX10 a 15.指数式与对数式的互化: .五、对数与对数函数1对数的运算法则:(1)a b = N b = log a N(2)log a 1 = 0(3)log a a = 1(4)log a a b = b(5)a log a N = N(6)log a (MN) = log a M + log a N (7)log a () = log a M - log a N(8)log a
5、 N b = b log a N (9)换底公式:log a N = (10)推论 (,且,且, ).(11)log a N = (12)常用对数:lg N = log 10 N (13)自然对数:ln A = log e A (其中 e = 2.71828) 2、对数函数y = log a x (a 0且a1)的性质:(1)定义域:( 0 , +) ; 值域:R (2)图象过定点(1,0)X0Y10 a 1六、幂函数y = x a 的图象:(1) 根据 a 的取值画出函数在第一象限的简图 .a 00 a 1例如: y = x 2 七.图象平移:若将函数的图象右移、上移个单位,得到函数的图象;
6、 规律:左加右减,上加下减八. 平均增长率的问题假如原来产值的根底数为N,平均增长率为,则对于时间的总产值,有.九、函数的零点:1.定义:对于,把使的X叫的零点。即 的图象与X轴相交时交点的横坐标。2.函数零点存在性定理:假如函数在区间上的图象是连绵不断的一条曲线,并有,那么在区间内有零点,即存在,使得,这个C就是零点。3.二分法求函数零点的步骤:(给定准确度) (1)确定区间,验证;(2)求的中点 (3)计算若,则就是零点;若,则零点 若,则零点; (4)推断是否到达准确度,若,则零点为或或内任一值。否 则重复(2)到(4)必修2:一、直线与圆 1、斜率的计算公式:k = tan= ( 90
7、,x 1x 2)2、直线的方程(1)斜截式 y = k x + b,k存在 ;(2)点斜式 y y 0 = k ( x x 0 ) ,k存在;(3)两点式 () ;4)截距式 ()(5)一般式3、两条直线的位置关系: l1:y = k1 x + b1 l2:y = k 2 x + b2l1: A1 x + B1 y + C1 = 0l2: A2 x + B2 y + C2 = 0重合k1= k 2且b1= b2平行k1= k 2且b1 b2垂直k1 k 2 = 1A1 A2 + B1 B2 = 04、两点间间隔 公式:设P1 ( x 1 , y 1 ) 、P 2 ( x 2 , y 2 ),则
8、 | P1 P2 | =5、点P ( x 0 , y 0 )到直线l :A x + B y + C = 0的间隔 :7、圆的方程圆的方程圆心半径标准方程x 2+ y 2= r 2(0,0)r(x a ) 2 + ( y b ) 2 = r 2(a,b)r一般方程x 2 + y 2 +D x + E y + F = 08.点与圆的位置关系点与圆的位置关系有三种若,则 点在圆外;点在圆上;点在圆内.9.直线与圆的位置关系(圆心到直线的间隔 为d)直线与圆的位置关系有三种:;.10.两圆位置关系的断定方法设两圆圆心分别为O1,O2,半径分别为r1,r2,;.11.圆的切线方程(1)已知圆若已知切点在
9、圆上,则切线只有一条,其方程是 .当圆外时, 表示过两个切点的切点弦方程过圆外一点的切线方程可设为,再利用相切条件求k,这时必有两条切线,留意不要漏掉平行于y轴的切线斜率为k的切线方程可设为,再利用相切条件求b,必有两条切线(2)已知圆过圆上的点的切线方程为;斜率为的圆的切线方程为二、立体几何 (一)、线线平行断定定理:1、平行于同一条直线的两条直线相互平行。2、垂直于同一平面的两直线平行。3、假如一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。4、假如两个平行平面同时与第三个平面相交,那么它们的交线平行。(二)、线面平行断定定理1、若平面外的一条直线与此平面
10、内的一条直线平行,则该直线与此平面平行。2、若两个平面平行,则其中一个平面内的任何一条直线都与另一个平面平行。(三)、面面平行断定定理:假如一个平面内有两条相交直线分别平行于另一个平面,那么这两个平面平行。(四)、线线垂直断定定理:若始终线垂直于一平面,则这条直线垂直于这个平面内的全部直线。(五)、线面垂直断定定理1、假如一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。2、假如两个平面相互垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。(六)、面面垂直断定定理假如一个平面经过另一个平面的一条垂线,那么这两个平面相互垂直。(七)证明直线与直线的平行的思索途径(1
11、)转化为断定共面二直线无交点;(2)转化为二直线同与第三条直线平行;(3)转化为线面平行;(4)转化为线面垂直;(5)转化为面面平行.(八)证明直线与平面的平行的思索途径(1)转化为直线与平面无公共点;(2)转化为线线平行;(3)转化为面面平行.(九)证明平面与平面平行的思索途径(1)转化为断定二平面无公共点;(2)转化为线面平行;(3)转化为线面垂直.(十)证明直线与直线的垂直的思索途径(1)转化为相交垂直;(2)转化为线面垂直;(3)利用三垂线定理或逆定理;(十一)证明直线与平面垂直的思索途径(1)转化为该直线与面内任始终线垂直;(2)转化为该直线与平面内相交二直线垂直;(3)转化为该直线
12、与平面的一条垂线平行;(4)转化为该直线垂直于另一个平行平面;CBAPDO(十二)证明平面与平面的垂直的思索途径(1)转化为推断二面角是直二面角;(2)转化为线面垂直.三、空间几何体(一)、正三棱锥的性质1、底面是正三角形,若设底面正三角形的边长为a,则有图形外接圆半径内切圆半径面积正三角形DOBA2、正三棱锥的协助线作法一般是:作PO底面ABC于O,则O为ABC的中心,PO为棱锥的高,取AB的中点D,连结PD、CD,则PD为三棱锥的斜高,CD为ABC的AB边上的高,且点O在CD上。POD和POC都是直角三角形,且POD =POC = 90(二)、正四棱锥的性质PDACBOE1、底面是正方形,
13、若设底面正方形的边长为a,则有图形外接圆半径内切圆半径面积正方形OABOB =OA = S = a 22、正四棱锥的协助线作法一般是:作PO底面ABCD于O,则O为正方形ABCD的中心,PO为棱锥的高,取AB的中点E,连结PE、OE、OA,则PE为四棱锥的斜高,点O在AC上。POE和POA都是直角三角形,且POE =POA = 90(三)、长方体长方体的一条对角线长的平方等于这个长方体的长、宽、高的平方和。特别地,若正方体的棱长为a ,则这个正方体的一条对角线长为a 。(四)、正方体与球A1B1C1D1ABCD1、设正方体的棱长为a,它的外接球半径为R1,它的内切球半径为R2,则O(五)几何体
14、的外表积体积计算公式 1、圆柱: 外表积:2+2Rh 体积:Rh 2、圆锥: 外表积:R+RL 体积: Rh/3 (L为母线长)3、圆台:外表积: 体积:Vh(RRrr)/34、球:S球面 = 4R2 V球 = R3 (其中R为球的半径)5、正方体: a边长, S6a ,Va6、长方体 a长 ,b宽 ,c高 S2(ab+ac+bc) Vabc 7、棱柱:全面积=侧面积+2X底面积 VSh 8、棱锥:全面积=侧面积+底面积 VSh/3 9、棱台:全面积=侧面积+上底面积+下底面积 四、三视图 1.投影:把光由一点向外散射形成的投影称为中心投影。把在一束平行光线照耀下形成的投影,称为平行投影。平行
15、投影根据投射方向是否正对着投影面,可以分为斜投影和正投影两种。 2、光线从几何体的前面对后面正投影,得到投影图,这种投影图叫做几何体的正视图(也叫主视图);光线从几何体的上面对下面正投影,得到投影图,这种投影图叫做几何体的俯视图;光线从几何体的左面对右面正投影,得到投影图,这种投影图叫做几何体的侧视图(或左视图)3、“长对正,高平齐,宽相等”是三视图之间的投影规律,是画图和读图的重要根据.画几何体的三视图时,能看见的轮廓线和棱用实线表示,不能看见的轮廓线和棱用虚线表示。必修3: 第一章 算法初步1、算法概念:在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些
16、程序或步骤必需是明确和有效的,而且可以在有限步之内完成.2、构成程序框的图形符号及其作用程序框名称功能起止框表示一个算法的起始和完毕,是任何流程图不行少的。输入、输出框表示一个算法输入和输出的信息,可用在算法中任何须要输入、输出的位置。处理框赋值、计算,算法中处理数据须要的算式、公式等分别写在不同的用以处理数据的处理框内。推断框推断某一条件是否成立,成立时在出口处标明“是”或“Y”;不成立时标明“否”或“N”。3、算法的三种根本逻辑构造:依次构造、条件构造、循环构造。(构造图请看教材)4、(1)、辗转相除法:用较大的数除以较小的数所得的余数和较小的数构成新的一对数,接着做上面的除法,直到大数被
17、小数除尽,这个较小的数就是最大公约数。(2)、更相减损术。以较大的数减去较小的数,接着把较小的数与所得的差比拟,并以大数减小数。接着这个操作,直到所得的数相等为止,则这个数(等数)就是所求的最大公约数。(3)进位制 以k为基数的k进制换算为十进制: 十进制换算为k进制:除以k取余,倒序排列第二章 统计 1总体和样本:在统计学中 , 把探讨对象的全体叫做总体把每个探讨对象叫做个体把总体中个体的总数叫做总体容量为了探讨总体的有关性质,一般从总体中随机抽取一局部:, , , 探讨,我们称它为样本其中个体的个数称为样本容量2、简洁随机抽样,也叫纯随机抽样。就是从总体中不加任何分组、划类、排队等,完全随
18、机地抽取调查单位。特点是:每个样本单位被抽中的可能性一样。(总体个数较少)3、简洁随机抽样常用的方法:(1)抽签法;随机数表法;计算机模拟法;4、系统抽样(等距抽样):把总体的单位进展排序,再计算出抽样间隔 ,然后根据这一固定的抽样间隔 抽取样本。第一个样本采纳简洁随机抽样的方法抽取。(总体个数较多)K(抽样间隔 )=N(总体规模)/n(样本规模)5、分层抽样:先将总体中的全部单位根据某种特征或标记(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采纳简洁随机抽样或系统抽样的方法抽取一个子样本,最终,将这些子样本合起来构成总体的样本。先以分层变量将总体划分为若干层,再根据各层在总体
19、中的比例从各层中抽取。(总体中差异明显)6、总体分布的估计:一表二图:频率分布表数据详实频率分布直方图分布直观 频率分布折线图便于视察总体分布趋势注:总体分布的密度曲线与横轴围成的面积为1。茎叶图:茎叶图适用于数据较少的状况,从中便于看出数据的分布,以及中位数、众位数等。 个位数为叶,十位数为茎,右侧数据根据从小到大书写,一样的数重复写。7、用样本的数字特征估计总体的数字特征(s 为标准差)(1)、平均值:(2)、8、两个变量的线性相关(1)、概念:(1)回来直线方程:(2)回来系数:,(3)应用直线回来时留意:回来分析前,最好先作出散点图;第三章 概率一、概念 1、事务:试验的每一种可能的结
20、果,用大写英文字母表示;(1)必定事务:在条件S下,肯定会发生的事务,叫相对于条件S的必定事务;(2)不行能事务:在条件S下,肯定不会发生的事务,叫相对于条件S的不行能事务;(3)随机事务:在条件S下可能发生也可能不发生的事务,叫相对于条件S的随机事务;2、古典概型:根本领件:一次试验中可能出现的每一个根本结果;古典概型的特点:根本领件可列举;每个根本领件都是等可能发生概率计算公式:一次试验的等可能根本领件共有n个,事务A包含了其中的m个根本领 件,则事务A发生的概率3、几何概型:特点:全部的根本领件是无限个;每个根本领件都是等可能发生。几何概型概率计算公式: 。4、若AB=,即不行能同时发生
21、的两个事务,那么称事务A与事务B互斥;5、若AB为不行能事务,AB为必定事务,即不能同时发生且必有一个发生的两个事务,那么称事务A与事务B互为对立事务;二、概率的根本性质:1)必定事务概率为1,不行能事务概率为0,因此0P(A)1;2)当事务A与B互斥时,满意加法公式:P(AB)= P(A)+ P(B);3)若事务A与B为对立事务,则AB为必定事务,所以P(AB)= P(A)+ P(B)=1,于 是有P(A)=1P(B);4)互斥事务与对立事务的区分与联络,互斥事务是指事务A与事务B在一次试验中不会同时发生,详细包括三种不同的情形:(1)事务A发生且事务B不发生;(2)事务A不发生且事务B发生
22、;(3)事务A与事务B同时不发生,而对立事务是指事务A与事务B有且仅有一个发生,其包括两种情形;(1)事务A发生B不发生;(2)事务B发惹事务A不发生,对立事务是互斥事务的特别情形。必修4 一、三角函数与三角恒等变换1、三角函数的图象与性质函数正弦函数余弦函数正切函数图象定义域RRx| x+k,kZ值域-1,1-1,1R周期性22奇偶性奇函数偶函数奇函数单调性增区间-+2k,+2k减区间+2k, +2k增区间-+2k, 2k减区间2k,+2k( kZ )增区间(-+k,+k)( kZ )对称轴x = + k( kZ )x = k ( kZ )无对称中心( k,0 ) ( kZ )(+ k,0
23、)( kZ )( k,0 ) ( kZ )2、同角三角函数公式 sin 2+ cos 2= 1 tancot=13、二倍角的三角函数公式sin2= 2sincos cos2=2cos2-1 = 1-2 sin2= cos2- sin2 4、降幂公式 5、升幂公式 1sin2= (sincos) 2 1 + cos2=2 cos2 1- cos2= 2 sin26、两角和差的三角函数公式sin () = sincos土cossin cos () = coscos干sinsin 7、两角和差正切公式的变形:tantan= tan () (1干tantan)= tan (+) = tan (-)8、
24、两角和差正弦公式的变形(合一变形) (其中)9、半角公式: 10、三角函数的诱导公式 “奇变偶不变,符号看象限。”sin () = sin, cos () = cos, tan () = tan;sin (+) = sin cos (+) = cos tan (+) = tan sin (2) = sin cos (2) = cos tan (2) = tan sin () = sin cos () = cos tan () = tan sin () = cos cos () = sin tan () = cot sin (+) = cos cos (+) = sin tan (+) = co
25、t 11.三角函数的周期公式 函数,xR及函数,xR(A,为常数,且A0,0)的周期;函数,(A,为常数,且A0,0)的周期.二、平面对量 (一)、向量的有关概念1、向量的模计算公式:(1)向量法:| =;(2)坐标法:设=(x,y),则| =2、单位向量的计算公式:(1)与向量=(x,y)同向的单位向量是;(2)与向量=(x,y)反向的单位向量是;3、平行向量规定:零向量与任一向量平行。设=(x1,y1),=(x2,y2),为实数向量法:() = 坐标法:() x1 y2 x2 y1 = 0 (y1 0 ,y 2 0)4、垂直向量规定:零向量与任一向量垂直。设=(x1,y1),=(x2,y2
26、)向量法: = 0 坐标法: x1 x 2 + y1 y 2 = 05.平面两点间的间隔 公式 =(A,B).(二)、向量的加法(1)向量法:三角形法则(首尾相接首尾连),平行四边形法则(起点一样连对角)(2)坐标法:设=(x1,y1),=(x2,y2),则+=(x1+ x2 ,y1+ y2)(三)、向量的减法(1)向量法:三角形法则(首首相接尾尾连,差向量的方向指向被减向量)(2)坐标法:设=(x1,y1),=(x2,y2),则-=(x1 - x2 ,y1- y2)(3)、重要结论:| | - | | | | + |(四)、两个向量的夹角计算公式:(1)向量法:cos = (2)坐标法:设=
27、(x1,y1),=(x2,y2),则cos =(五)、平面对量的数量积计算公式:(1)向量法:= | | cos (2)坐标法:设=(x1,y1),=(x2,y2),则= x1 x2 + y1 y2 (3) ab的几何意义:数量积ab等于a的长度|a|与b在a的方向上的投影|b|cos的乘积(六).1、实数与向量的积的运算律:设、为实数,那么(1) 结合律:(a)=()a;(2)第一安排律:(+)a=a+a;(3)第二安排律:(a+b)=a+b.2.向量的数量积的运算律:(1) ab= ba (交换律);(2)(a)b= (ab)=ab= a(b);(3)(a+b)c= a c +bc.3.平
28、面对量根本定理:假如e1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数1、2,使得a=1e1+2e2不共线的向量e1、e2叫做表示这一平面内全部向量的一组基底(七).三角形的重心坐标公式 ABC三个顶点的坐标分别为、,则ABC的重心的坐 标是必修5 一、解三角形:ABC的六个元素A, B, C, a , b, c满意下列关系:1、角的关系:A + B + C = ,特别地,若ABC的三内角A, B, C成等差数列,则B = 60,A +C = 1202、诱导公式的应用:sin ( A + B ) = sinC , cos ( A + B ) = -cosC , sin () = cos , cos () = sin3、边的关系:a + b c , a b 0时,有. 或.(四).指数不等式与对数不等式 (1)当时, ; .(2)当时, ;(五). 或所表示的平面区域: 直线定界,特别点定域。