《高中数学导数及其应用教案.docx》由会员分享,可在线阅读,更多相关《高中数学导数及其应用教案.docx(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、特性化教学辅导教案学科: 数学 任课教师: 教师 授课时间: 年 月 日(星期 ) 姓名 年级:高三 教学课题导数及其应用阶段根底() 进步() 稳固()安排课时第( )次课共( )次课教学目的学问点:考点:方法:重点难点重点:难点:教学内容及教学过程课前检查作业完成状况:优 良 中 差 建议_导数及其应用(一) 主要学问及主要方法:设函数在处旁边有定义,当自变量在处有增量时,则函数相应地有增量,假如时,及的比(也叫函数的平均变更率)有极限即无限趋近于某个常数,我们把这个极限值叫做函数在处的导数,记作,即在定义式中,设,则,当趋近于时,趋近于,因此,导数的定义式可写成.导数的几何意义:导数是函
2、数在点的处瞬时变更率,它反映的函数在点处变更的快慢程度. 它的几何意义是曲线上点()处的切线的斜率.因此,假如在点可导,则曲线在点()处的切线方程为 导函数(导数):假如函数在开区间内的每点处都有导数,此时对于每一个,都对应着一个确定的导数,从而构成了一个新的函数, 称这个函数为函数在开区间内的导函数,简称导数,也可记作,即函数在处的导数就是函数在开区间上导数在处的函数值,即.所以函数在处的导数也记作可导: 假如函数在开区间内每一点都有导数,则称函数在开区间内可导可导及连续的关系:假如函数在点处可导,那么函数在点处连续,反之不成立. 函数具有连续性是函数具有可导性的必要条件,而不是充分条件.求
3、函数的导数的一般步骤:求函数的变更量求平均变更率;取极限,得导数 几种常见函数的导数: (为常数); (); ; ; ; , ; 求导法则:法则: 法则: , 法则: 复合函数的导数:设函数在点处有导数,函数在点的对应点处有导数,则复合函数在点x处也有导数,且 或 复合函数的求导法则:复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数 复合函数求导的根本步骤是:分解求导相乘回代 导数的几何意义是曲线在点()处的切线的斜率,即,要留意“过点的曲线的切线方程”及“在点处的切线方程”是不尽一样的,后者必为切点,前者未必是切点.问题1已知,求设函数在点处可导,求对于上可导
4、的随意函数,若满意,则必有 设函数,在上均可导,且,则当时,有 问题2的导函数的图象如图所示,则的图象最有可能的是 问题3求下列函数的导数:; ; 问题4求过点且及曲线相切的直线方程.过点作抛物线的切线,则其中一条切线为 已知曲线的一条切线方程是,则的值为 或 或(三)课后作业: 若,求已知,则 (四)走向高考: 过原点作曲线的切线,则切点的坐标为 ,切线的斜率为 设函数(),若是奇函数,则 设,则 若曲线的一条切线及直线垂直,则的方程为 ;曲线在点处的切线及坐标轴所围三角形的面积为 已知曲线的一条切线的斜率为,则切点的横坐标为 已知函数的图象在点处的切线方程是,则 曲线在点处的切线方程是 对
5、正整数,设曲线在处的切线及轴交点的纵坐标为,则数列的前项和的公式是 已知函数在处获得极值. 探讨和函数的的极大值还是微小值;过点作曲线的切线,求此切线方程.导数的应用(一) 主要学问及主要方法:利用导数探讨多项式函数单调性的一般步骤:求;确定在内符号;若在上恒成立,则在上是增函数;若在上恒成立,则在上是减函数为增函数(为减函数).在区间上是增函数在上恒成立 ;在区间上为减函数在上恒成立 .极大值: 一般地,设函数在点旁边有定义,假如对旁边的全部的点,都有,就说是函数的一个极大值,记作极大值,是极大值点.微小值:一般地,设函数在旁边有定义,假如对旁边的全部的点,都有就说是函数的一个微小值,记作微
6、小值,是微小值点.极大值及微小值统称为极值在定义中,获得极值的点称为极值点,极值点是自变量的值,极值指的是函数值请留意以下几点:()极值是一个部分概念由定义,极值只是某个点的函数值及它旁边点的函数值比拟是最大或最小.并不意味着它在函数的完全的定义域内最大或最小.()函数的极值不是唯一的即一个函数在某区间上或定义域内极xs大值或微小值可以不止一个.()极大值及微小值之间无确定的大小关系即一个函数的极大值未必大于微小值,如下图所示,是极大值点,是微小值点,而.()函数的极值点肯定出如今区间的内部,区间的端点不能成为极值点而使函数获得最大值、最小值的点可能在区间的内部,也可能在区间的端点.当在点连续
7、时,判别是极大、微小值的方法:若满意,且在的两侧的导数异号,则是的极值点,是极值,并且假如在两侧满意“左正右负”,则是的极大值点,是极大值;假如在两侧满意“左负右正”,则是的微小值点,是微小值.求可导函数的极值的步骤:确定函数的定义区间,求导数求方程的根用函数的导数为的点,顺次将函数的定义区间分成若干小开区间,并列成表格.检查在方程根左右的值的符号,假如左正右负,那么在这个根处获得极大值;假如左负右正,那么在这个根处获得微小值;假如左右不变更符号,那么在这个根处无极值.假如函数在某些点处连续但不行导,也须要考虑这些点是否是极值点 .函数的最大值和最小值: 一般地,在闭区间上连续的函数在上必有最
8、大值及最小值说明:在开区间内连续的函数不肯定有最大值及最小值如函数在内连续,但没有最大值及最小值;函数的最值是比拟整个定义域内的函数值得出的;函数的极值是比拟极值点旁边函数值得出的函数在闭区间上连续,是在闭区间上有最大值及最小值的充分条件而非必要条件函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个.利用导数求函数的最值步骤:由上面函数的图象可以看出,只要把连续函数全部的极值及定义区间端点的函数值进展比拟,就可以得出函数的最值了设函数在上连续,在内可导,则求在上的最大值及最小值的步骤如下:求在内的极值;将的各极值及、比拟得出函数在上的最值p求参数范围的方法
9、:分别变量法;构造(差)函数法.构造函数法是证明不等式的常用方法:构造时要留意四变原则:变详细为抽象,变常量为变量,变主元为辅元,变分式为整式.通过求导求函数不等式的根本思路是:以导函数和不等式为根底,单调性为主线,最(极值)为助手,从数形结合、分类探讨等多视角进展综合探究.(二)典例分析: 问题1函数在定义域内可导,其图象如图所示,记的导函数为,则不等式的解集为设均是定义在上的奇函数,当时,且,则不等式的解集是 问题2假如函数在区间上单调递增,并且方程的根都在区间内,则的取值范围为 已知,那么在区间上单调递增在上单调递增在上单调递增 在上单调递增函数,()求的单调区间和极值;()若关于的方程
10、有个不同实根,务实数的取值范围.()已知当时,恒成立,务实数的取值范围.问题3已知函数,其中()当时,求曲线在点处的切线方程;()当时,求函数的单调区间及极值问题4已知定义在正实数集上的函数,其中设两曲线,有公共点,且在该点处的切线一样()用表示,并求的最大值;()求证:()若函数在上可导且满意不等式恒成立,且常数满意,则下列不等式肯定成立的是 求满意条件的的范围:使为上增函数,则的范围是 使为上增函数,则的范围是 使为上增函数,则的范围是 证明方程在上至多有一实根.假如是二次函数, 且的图象开口向上,顶点坐标为, 那么曲线上任一点的切线的倾斜角的取值范围是 如图,是函数的大致图像,1,3,5
11、则等于 函数的定义域是开区间,导函数在内的图象如图所示,则函数在开区间内有微小值点个 个 个 个函数的图象如图所示,且,则有 已知:,证明不等式:设恰有三个单调区间,试确定的取值范围,并求出这三个单调区间已知函数在处获得极值务实数的值;若关于的方程 在区间上恰有两个不同的实数根,务实数的取值范围;证明:对随意的正整数,不等式都成立 (四)走向高考: 是定义在上的非负可导函数,且满意对随意正数,若,则必有 已知二次函数的导数为,对于随意实数,有,则的最小值为 函数在下面哪个区间内是增函数 曲线在点处的切线及轴、直线所围成的三角形的面积为,则 已知函数在处获得极值,其中为常数()试确定的值;()探讨函数的单调区间;()若对随意,不等式恒成立,求的取值范围设函数()若当时,获得极值,求的值,并探讨的单调性;()若存在极值,求的取值范围,并证明全部极值之和大于设函数()证明:的导数;()若对全部都有,求的取值范围若函数在区间内为减函数,在区间内为增函数,试务实数的取值范围.课后稳固作业_; 稳固复习_; 预习布置_签字学科组长签字: 学习管理师:教师课后赏识评价教师最观赏的地方:教师的建议备注