《沪教版初中数学知识点汇总1.docx》由会员分享,可在线阅读,更多相关《沪教版初中数学知识点汇总1.docx(34页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 第九章 整式 第一节整式的概念9.1.2.3、字母表示数代数式:用括号和运算符号把数或表示数的字母连接而成的式子叫代数式。单独的数或字母也是代数式。代数式的书写:1、代数式中出现乘号通常写作“*”或省略不写,但数与数相乘不遵循此原则。 2、数字与字母相乘,数字写在字母前面,而有理数要写在无理数的前面。 3、带分数应写成假分数的形式,除法运算写成分数形式。 4、一样字母相乘通常不把每个因式写出来,而写成幂的形式。 5、代数式不能含有“=、”符号。代数式的值:用数值代替代数式中的字母,根据代数式的运算关系计算出的结果,叫代数式的值。留意:1、代数式中省略了乘号,带入数值后应添加。 2、若带入的值
2、是负数时,应添上括号。 3、留意解题格式标准,应写“当.时,原式=.”. 4、在实际问题中代数式所取的值应使实际问题有意义。9.4整式 1、由数与字母的乘积组成的代数式称为单项式。单独一个数或字母 也是单项式。 2、系 数:单项式中的数字因数叫做这个单项式的系数。 3、单项式的次数:一个单项式中全部字母的指数的和叫做这个单项 式的次数。 4、多项式:几个单项式的和叫做多项式。其中,每个单项式叫做多项式的项,不含字母的项叫做常数项。 5、多项式的次数:多项式里次数最高的项的次数叫做这个多项式的 次数 6、整式:单项式和多项式统称为整式。9.5合并同类项 1、同类项:所含字母一样,并且一样字母的指
3、数也一样的项叫做 同类项。 2、合并同类项:把多项式中的同类项合并成一项叫做合并同类项。一个多项式合并后含有几项,这个多项式就叫做几项式。 3、合并同类项的法则是:把同类项的系数相加的结果作为合并后 的系数,字母和字母的指数不变。第二节9.6整式的加减: 去括号法则: (1)括号前面是号,去掉号和括号,括号里各项的不变号; (2)括号前面是号,去掉号和括号,括号里的各项都变号。 添括号法则(1)所添括号前面是“+”号,括到括号里的各项都不变符号;(2)所添括号前面是“”号,括到括号里的各项都变更符号。第三节整式的乘法9.7同底数幂的乘法、9.8幂的乘方、9.9积的乘方: 同底数幂的乘法 ama
4、n=am+n(m、n都是正整数)。 同底数幂相乘,底数不变,指数相加。幂的乘方与积的乘方 (am)n=amn(m、n都是正整数) 幂的乘方,底数不变,指数相乘。 (ab)n=anbn (n都是正整数) 积的乘方等于各因式乘方的积。 同底数幂的除法aman=am-n(a0,mn都是正整数,且mn) 同底数幂相除,底数不变,指数相减。a0=1(a0)1ap任何一个不等于零的数的零指数幂都等于1。 a-p= (a0,p是正整数) 任何一个不等零的数 的-p(p是正整数)指数幂,等这个数的p指数幂的倒数。9.10整式的乘法:单项式与单项式相乘:单项式与单项式相乘,把它们的系数、一样字母分别相乘,对于只
5、在一个单项式里含有的字母,则连同它的指数作为积的一个因式。单项式与多项式相乘:单项式与多项式相乘,就是根据安排率用单项式去乘多项式的每一项,再把所得的积相加,即。留意:单项式乘多项式事实上是用安排率向单项式相乘转化。多项式与多项式相乘: 多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加, 即()()。第四节、乘法公式9.11平方差公式内容:()()意义: 两个数的和与这两个数的差的乘积,等于这两个数的平方差。特征: .左边是两个二项式相乘,这两项中有一项一样,另一项互 为相反数;.右边是乘式中两项的平方差; .公式中的和可以使有理数,也可以是单项式或多项式。几
6、何意义: 平方差公式的几何意义也就是图形变换过程中面积相等 的表达式。拓展:.立方和公式:()();.立方差公式: ()()。()()-。 9.12完全平方公式:内容: (); ()。意义: 两数和的平方,等于它们的平方和,加上它们积的倍。 两数差的平方,等于它们的平方和,减去它们积的倍。特征:.左边是一个二项式的完全平方,右边是一个二次三项式,其 中有两项是公式左边二项式中每一项的平方,另一项是左边二项式中两项乘积的倍,可简记为“首平方,尾平方,积的倍在中央。” .公式中的、可以是单项式,也可以是多项式。推广:.()c;.(); .()。第五节因式分解 因式分解的意义: 把一个多项式化为几个
7、整式积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式,即多项式化为几个整式的积。留意:因式分解的要求: .结果肯定是积的形式,分解的对象是多项式; .每个因式必需是整式; .各因式要分解到不能分解为止。 因式分解与整式乘法的关系: 是两种不同的变形过程,即互逆关系。9.13提取公因式法: 提公因式法分解因式: (),这个变形就是提公因式法分解因式。这里的可以代表单项式,也可以代表多项式,称为公因式。确定公因式方法:系数:取多项式各项系数的最大公约数。字母(或多项式因式):取各项都含有的字母(或多项式因式)的最低次幂。9.14公式法利用公式法分解因式:.平方差公式:()()
8、。.完全平方公式:(); ()。.立方和与立方差公式:()(); ()()。留意:()公式中的字母、可代表一个数、一个单项式或一个多项式。() 选择运用公式的方法:主要从项数上看,若多项式是二项式 应考虑平方差或立方和、立方差公式;若多项式是三项式,可 考虑用完全平方公式。9.15.十字相乘法:利用十字穿插线来分解系数,把二次三项式分解 因式的方法叫做十字相乘法。 ()()()。9.16分组分解法:.将多项式的项适当的分组后,组与组之间能提公因式或运用公式分解。.适用范围:合适四项以上的多项式的分解。分组的标准为:分组后能提公因式或分组后能运用公式。其他方法: .求根公式法:若+()的两根是、
9、, +=(-)(-)。因式分解的一般步骤及留意问题:对多项式各项有公因式时,应先供应因式。 多项式各项没有公因式时,假如是二项式就考虑是否符合平方差 公式;假如是三项式就考虑是否符合完全平方公式或二次三项式的 因式分解;假如是四项或四项以上的多项式,通常采纳分组分解法。分解因式,必需进展到每一个多项式都不能再分解为止。第六节 整式除法:9.17同底数幂的除法 同底数幂相除,底数不变,指数相减。 任何不等于零的数的零次幂为1,既:9.18单项式除以单项式:单项式与单项式相除的法则:单项式与单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因
10、式。留意:两个单项式相除,只要将系数及同底数幂分别相除即可。只在被除式里含有的字母不不要漏掉。 9.19多项式与单项式相除:多项式与单项式相除的法则: 一般地,多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加,即(+)=+。留意:这个法则的运用范围必需是多项式除以单项式,反之,单项式除以多项式是不能这样计算的。 整式的混合运算:关键是留意运算依次,先乘方,在乘除,后加减,有括号时,先去小括号,再去中括号,最终去大括号,先做括号里的。 内容整理幂的运算aman=am+n(am)n=amn(ab)n=anbnaman=am-n单项式的乘法乘法公式因式分解提公因式法公 式 法
11、多项式除以单项式多项式的乘法单项式的除法 第十章 分 式10.1、(1)、分式的意义两个整式A/B相除,即AB时,可以表示为A/B.假如B中含有字母,那么A/B叫做分式。A叫做分式的分子,B叫做分式的分母。假如一个分式的分母为零,那么这个分式无意义。10.2(2)、分式的根本性质 整式整式和分式统称为有理式:即有理式 分式 分式的分子和分母同时乘以(或除以)同一个不为0的整式, 分式的值不变。用式子表示为:A/B=A*C/B*C A/B=AC/BC (A,B,C为整式,且B、C0) 约分:把一个分式的分子和分母的公因式约去,这种变形称为分式 的约分 分式的约分步骤: (1)假如分式的分子和分母
12、都是或者是几个乘积的形式,将它们的 公因式约去 (2)分式的分子和分母都是将分子和分母分别,再将公因式约去. 注:公因式的提取方法:取分子和分母系数的,字母取分子和分 母共有的字母,指数取公共字母的最小指数,即为它们的公因式. 一个分式的分子和分母没有公因式时,这个分式称为最简分式.约分 时,一般将一个分式化为最简分式。 通分:把几个异分母分式分别化为与原分式值相等的同分母分式, 叫做分式的通分。分式的通分步骤:先求出全局部式分母的最简公分母,再将全局部式的分母变为最简公分母.同时各分式根据分母所扩大的倍数,相应扩大各自的分子. 注:最简公分母确实定方法:系数取各因式系数的最小公倍数,一样字母
13、的及单独字母的幂的乘积。注:(1)约分和通分的根据都是分式的根本性质。(2)分式的约分和通分都是互逆运算过程。10.3、分式的运算:分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:a/b * c/d=ac/bd 分式的除法法则:.两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘 :a/bc/d=ad/bc .除以一个分式,等于乘以这个分式的倒数:a/bc/d=a/b*d/c异分母分式通分时,关键是确定公分母,通常取各分母全部因式的最高次幂的积作为公分母,这样的公分母叫做最简公分母。10.4分式的加减同分母分式加减法则:同分母的分式相加
14、减,分母不变,把分子相加减.用字母表示为:a/cb/c=ab/c 异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进展计算.用字母表示为: a/bc/d=adcb/bd 10.5分式方程:分式方程的意义:分母中含有未知数的方程叫做分式方程. 分式方程的解法:.去分母(方程两边同时乘以最简公分母,将分式方程化为整式方 程);.按解整式方程的步骤求出未知数的值;.验根(求出未知数的值后必需验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根). 10.6整数指数幂及其运算 内容整理 分式分式的性质分式运算分式方程约分通分乘
15、除法加减法 第十一章 图形的运动1、平移定义和规律(1)平移的定义:在平面内,将一个图形沿某个方向挪动肯定的间隔 ,这样的图形运动称为平移(Translation)。平移后各对应点之间的间隔 叫做图形平移的间隔 。关键:a. 平移不变更图形的形态和大小(也不会变更图形的方向,但变更图形的位置)。 b. 图形平移三要素:原位置、平移方向、平移间隔 。(2)平移的规律(性质):经过平移,对应点所连的线段平行且相等,对应线段平行且相等、对应角相等。留意:平移后,原图形与平移后的图形全等。(3)简洁的平移作图: 平移作图要留意:方向;间隔 。整个平移作图,就是把整个图案的每一个特征点按肯定方向和肯定的
16、间隔 平行挪动。2、旋转的定义和规律(1)旋转的定义:在平面内,将一个图形饶一个定点沿某个方向转动一个角度,这样的运动叫做图形的旋转(Circumrotate)。这个定点称为旋转中心;转动的角称为旋转角。关键:a. 旋转不变更图形的形态和大小(但会变更图形的方向,也变更图形的位置)。 b. 图形旋转四要素:原位置、旋转中心、旋转方向、旋转角。(2)旋转的规律(性质): 经过旋转,图形上的每一个点都绕旋转中心沿一样方向转动了一样的角度,随意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的间隔 相等。(旋转前后两个图形的对应线段相等、对应角相等。)留意:旋转后,原图形与旋转后的图形
17、全等。(3)简洁的旋转作图: 旋转作图要留意:旋转方向;旋转角度。整个旋转作图,就是把整个图案的每一个特征点绕旋转中心按肯定的旋转方向和肯定的旋转角度旋转挪动。3、图案的分析与设计 首先找到根本图案,然后分析其他图案与它的关系,即由它作何种运动变换而形成。 图案设计的根本手段主要有:轴对称、平移、旋转三种方法。4、 旋转对称图形:把一个图形围着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角(旋转角满意00时,()=a,()=a.(2) 当a0时, =a; 当a0时, =12.3 立方根和开立方 假如一个数的立方等于a,那么这个数
18、叫做a的立方根,用“”表示,读作“三次根号”。中的叫做被开方数,“3”叫做根指数。 求一个数的立方根的运算叫做开立方。正数的立方是一个正数,负数的立方是一个负数,零的立方等于零,所以正数的立方根是一个正数,负数的立方根是一个负数,零的立方根是零。随意一个实数都有立方根,而且只有一个立方根。12.4n次方根 假如一个数的n次方(n是大于1的整数)等于,那么这个数叫做的n次方根,当n为奇数时,这个数为的奇次方根;当n为偶数时,这个数为的偶次方根 求一个数的n次方跟的运算叫做开n次方,叫做被开方数,n叫做根指数。 实数的奇次方根有且只有一个,用“”表示,其中被开方数是随意一个实数,根指数n是大于1的
19、奇数。 正数的偶次方根有两个,它们互为相反数,正n次方根用“”表示,负n次方根用“”表示,其中被开方数0,根指数n是正偶数(当n=2时,在中省略n) 负数的偶次方根不存在。 零的n次方根等于零,表示为=0 “”读作“n次根号” 第三节 实数的运算 12.5用数轴上的点表示数有理数范围内肯定值、相反数意义:一个实数在数轴上所对应的点到原点的间隔 叫做这个数的肯定值。实数a的肯定值记作.肯定值相等,符号相反的两个数记作互为相反数;零的相反数是零。非零实数的相反数是。实数大小的比拟: 负数小于零;零小于正数。两个正数,肯定值大的数较大;两个负数,肯定值大的数较小。从数轴上看,右边的点所表示的数总比左
20、边的点所表示的数大。两点间的间隔 :在数轴上,假如点A、点B所对应的数分别为、b,那么A、B两点的间隔 AB=b.12.6 实数的运算 设0,b0,可知()=( )()=b。根据平方根的意义,得=。 同理:= 近似数与准确数的接近程度即近似程度。对近似程度的要求,叫做准确度。对于一个近似数,从左边第一个不是零的数字起,往右到末位数字为止的全部数字,叫做这个近似数的有效数字。 第四节 分数指数幂 分数指数幂 =(0)= (0) 其中m、n为正整数,n1.有理数指数幂有下列性质:设b,b0,P、q为有理数,那么(1)=, =(2)=(3) 本章小结 有理数 实数的分类 无理数 实数 用数轴上的点表
21、示数 运算法则及运算性质 实数的运算 近似数及近似计算 数的开方 分数指数幂 有理数指数幂 运算性质 第十三章 相交线、平行线第1节 相交线13.1邻补角,对顶角 相交线的定义:在同一平面内,假如两条直线只有一个公共点,那么这两条直线叫做相交线。 对顶角的定义:一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角。 对顶角的性质:对顶角相等。 邻补角的定义:有公共顶点和一条公共边,并且互补的两个角称为邻补角。邻补角的性质:邻补角互补。垂线的定义: 垂直是相交的一种特殊情形,两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。垂线的性质:性质1:过一点有且只有一
22、条直线与已知直线垂直。性质2:垂线段最短。 点到直线的间隔 : 直线外一点到这条直线的垂线段的长度,叫做点到直线的间隔 。 同位角:两个角都在两条被截线同侧,并在截线的同旁,这样的一对角叫做同位角。 内错角: 两个角都在两条被截线之间,并且在截线的两旁,这样的一对角叫做内错角。 同旁内角: 两个角都在两条被截线之间,并且在截线的同旁,这样的一对角叫做同旁内角。 平行线的概念在同一平面内,不相交的两条直线叫做平行线。平行公理:经过直线外一点,有且只有一条直线与已知直线平行。平行公理的推论:假如两条直线都和第三条直线平行,那么这两条直 线也平行。13.2垂线1.垂线与斜线通过操作理论,所得到的结果
23、说明垂线有这样的根本性质: 在平面内经过直线上或直线外地一点作已知直线的垂线可以作一条,并且只能作一条。2.点到直线的间隔 联结直线外一点与直线上各点得全部线段中,垂线段最短。简洁地说:垂线段最短。直线外一点到这条直线的垂线段的长度,叫做这个点到直线的间隔 。133同位角,内错角,同旁内角(三线八角)第2节 平行线13.4 平行线的断定两条直线被第三条直线所截,假如同位角相等,那么这两条直线平行。(同位角相等,两直线平行)平行线具有以下根本性质:经过直线外地一点,有且只有一条直线与已知直线平行。两条直线被第三条直线所截,假如内错角相等,那么这两条直线平行。(内错角相等,两直线平行)两条直线被第
24、三条直线所截,假如同旁内角互补,那么这两条直线平行。(同旁内角互补,两直线平行)13.5 平行线的性质两条平行线被第三条直线所截,同位角相等。(两直线平行,同位角相等)两条平行线被第三条直线所截,内错角相等。(两直线平行,内错角相等)两条平行线被第三条直线所截,同旁内角互补。(两直线平行,同旁内角互补)假如两条直线都与第三条直线平行,那么这两条直线也互相平行。(对于直线、,假如,那么。被称为平行的传递性)两条平行线中,随意一条直线上的全部点到另一条直线的间隔 都是一个定值,这个定值叫做这两条平行线间的间隔 。第十四章 三角形第1节 三角形的有关概念与性质14.1 三角形的有关概念1.三角形的有
25、关线段三角形的高,中线,角平分线2.三角形的分类锐角三角形,直角三角形,钝角三角形,不等边三角形,等腰三角形,等边三角形14.2 三角形的内角和三角形的内角和等于。三角形的一个外角等于与它不相邻的两个内角的和;三角形的一个外角大于任何一个与它不相邻的内角。三角形的外角和等于。第2节 全等三角形14.3 全等三角形的概念与性质可以重合的两个图形叫做全等形。两个三角形是全等形,就说它们是全等三角形。两个全等三角形,经过运动后肯定重合,互相重合的顶点叫做对应顶点;互相重合的边叫做对应边;互相重合的角叫做对应角。全等三角形的对应边相等,对应角相等。14.4 全等三角形的断定断定方法1 在两个三角形中,
26、假如有两条边及它们的夹角对应相等,那么这两个三角形全等(简记为S.A.S)。断定方法2 在两个三角形中,假如有两个角及它们的夹边对应相等,那么这两个三角形全等(简记为A.S.A)。断定方法3 在两个三角形中,假如有两个角及其中一个角的对边对应相等,那么这两个三角形全等(简记为A.A.S)。断定方法4 在两个三角形中,假如有三条边对应相等,那么这两个三角形全等(简记为S.S.S)。 斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜边、直角边”和“HL”。、不能识别两个三角形全等,识别两个三角形全等时,必需有边的参加,假如有两边一角对应相等时,角必需是两边的夹角。三角形全等的证明思路找夹角
27、.已知两边找直角 找另一边找边的对角.已知一边一角边为角的邻边找夹角的另一边找夹边的另一角 边为角的对边找随意一角.已知两角找夹边找随意一边 第3节 等腰三角形14.5 等腰三角形的性质 等腰三角形的两个底角相等(简称“等边对等角”)。等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称为“等腰三角形的三线合一”)。等腰三角形是轴对称图形,它的对称轴是顶角平分线所在的直线。14.6 等腰三角形的断定假如一个三角形有两个角相等,那么这两个角所对的边也相等,这个三角形是等腰三角形(简称为“等角对等边”)。14.7 等边三角形 等边三角形是特殊的等腰三角形,它的三边都相等。等边三角形的性质
28、:等边三角形的每个内角等于。 断定等边三角形的方法: (1)三个内角都相等的三角形是等边三角形。(2)有一个角等于的等腰三角形是等边三角形。、不能识别两个三角形全等,识别两个三角形全等时,必需有边的参加,假如有两边一角对应相等时,角必需是两边的夹角。1、线段的垂直平分线:定理:线段垂直平分线上的点与线段两端间隔 相等。与线段两端间隔 相等的点在这条线段的垂直平分线上。留意:三角形三边的垂直平分线相交于一点,这点到三角形三个顶点的间隔 相等。2、等腰三角形:性质:等腰三角形两个底角相等,简称“等边对等角”。等腰三角形顶角的平分线垂直平分底边推论:等边三角形三个内角相等,每一个内角都等于60。定理
29、:假如一个三角形有两个角相等,那么这两个角所对的边相等,简称“等角对等边”。推论:三个角都相等的三角形是等边三角形。有一个角是60的等腰三角形是等边三角形。定理:在直角三角形中,假如一个锐角等于30,那么它所对的直角边等于斜边的一半。3、角的平分线:定理:角平分线上随意一点到角的两边的间隔 相等。在一个角的内部,到角的两边间隔 相等的点在这个角的平分线上。 第十五章 平面直角坐标系第1节 平面直角坐标系15.1 平面直角坐标系在平面内取一点,过点画两条互相垂直的数轴,且使它们以点为公共原点。这样,就在平面内建立了一个直角坐标系。通常,所画的两条数轴中,有一条是程度放置的,它的正方向向右,这条数
30、轴叫做横轴(记作轴);另一条是铅直放置的,它的正方向向上,这条轴叫做纵轴(记作轴)。如图所示,记作平面直角坐标系;点叫做坐标原点(简称原点),轴和轴统称为坐标轴。在平面直角坐标系xOy中,点P所对应的有序实数对(ab)叫做点P的坐标,记作P(a,b),其中叫做横坐标,b叫做纵坐标。象限的划分:经过点A(a,b)且垂直于x轴的直线可以表示为直线x=,经过点A(a,b)且垂直于y轴的直线可以表示为直线y=b. 第2节直角坐标平面内点的运动 15.2 直角坐标平面内点的运动点的坐标有了平面直角坐标系,平面内的点就可以用一个有序数对来表示,a点对应x轴的数值为横坐标,b点对应y轴的数值为纵坐标,有序数
31、对就叫做点A的坐标,记作(a,b)。在直角坐标平面内,平行于x轴的直线上的两点A(,y)、B(,y)的间隔 AB=;平行于y轴的直线上的两点C(x,)、D(x,)的间隔 CD=.点的平移在平面直角坐标系中,(m0)将点(x,y)向右平移m个单位长度,可以得到对应点(xm ,y); 将点(x,y)向左平移m个单位长度,可以得到对应点(xm,y); 将点(x,y)向上平移m个单位长度,可以得到对应点(x,ym); 将点(x,y)向下平移m个单位长度,可以得到对应点(x,ym)。坐标平面图 坐标平面图是由两条坐标轴和四个象限构成的,也可以说坐标平面内的点可以分为六个区域:x轴上,y轴上,第一象限,第
32、二象限,第三象限,第四象限。在这六个区域中,除x轴与y轴的一个公共点(原点)之外,其他区域之间都没有公共点。建立了直角坐标系的平面叫做直角坐标平面(简称坐标平面)。这样,原来平面内的点都可以用有序实数对来表示。在平面直角坐标系中,点所对应的有序实数对叫做点的坐标,记作,其中叫做横坐标,叫做纵坐标。原点的坐标是。的坐标是,的坐标是。在平面直角坐标系中对称点的特点: 关于x成轴对称的点的坐标,横坐标一样,纵坐标互为相反数。(横同纵反) 关于y成轴对称的点的坐标,纵坐标一样,横坐标互为相反数。(横反纵同) 关于原点成中心对称的点的坐标,横坐标与横坐标互为相反数,纵坐标与纵坐标互为相反数。(横纵皆反)
33、 一般地,在直角坐标平面内,与点M(x,y)关于X轴对称的点的坐标为(x,y);与点M(x,y)关于y轴对称的点的坐标为(-x,y).一般地,在直角坐标平面内,与点M(x,y)关于原点对称的点的坐标为(-x,-y)。第十六章 二次根式第一节 二次根式的概念和性质16.1 二次根式1 二次根式的概念: 式子叫做二次根式留意被开方数只能是正数或O2 二次根式的性质; 16.2 最简二次根式与同类二次根式1. 被开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式2.化成最简二次根式后,被开方数一样的二次根式,叫做同类二次根式16.3 二次根式的运算1.二次根式的加减:先把各个二次根式化成最简二次根式,再把同类三次根式分别合并2.二次根式的乘法:等于各个因式的被开方数的积的算术平方根,即 3.二次根式的和相乘,可参照多项式的乘法进展 两个含有二次根式的代数式相乘,假如它们的积不含有二次根式,那么这两个三次根式互为有理化因式4.二次根式相除,通常先写成分式的形式,然后分子、分母都乘以分母的有理化因式,把分母的根号化去(或分子、分母约分)把分母的根号化去,