《初一数学下册全部知识点归纳1.docx》由会员分享,可在线阅读,更多相关《初一数学下册全部知识点归纳1.docx(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第一章:整式的运算单项式 整 式多项式整式的运算同底数幂的乘法幂的乘方积的乘方 幂运算同底数幂的除法零指数幂负指数幂整式的加减单项式与单项式相乘单项式与多项式相乘整式的乘法多项式与多项式相乘整式运算平方差公式完全平方公式单项式除以单项式整式的除法多项式除以单项式一、单项式1、都是数字与字母的乘积的代数式叫做单项式。2、单项式的数字因数叫做单项式的系数。3、单项式中全部字母的指数和叫做单项式的次数。4、单独一个数或一个字母也是单项式。5、只含有字母因式的单项式的系数是1或1。6、单独的一个数字是单项式,它的系数是它本身。7、单独的一个非零常数的次数是0。8、单项式中只能含有乘法或乘方运算,而不能
2、含有加、减等其他运算。9、单项式的系数包括它前面的符号。10、单项式的系数是带分数时,应化成假分数。11、单项式的系数是1或1时,通常省略数字“1”。12、单项式的次数仅与字母有关,与单项式的系数无关。二、多项式1、几个单项式的和叫做多项式。2、多项式中的每一个单项式叫做多项式的项。3、多项式中不含字母的项叫做常数项。4、一个多项式有几项,就叫做几项式。5、多项式的每一项都包括项前面的符号。6、多项式没有系数的概念,但有次数的概念。7、多项式中次数最高的项的次数,叫做这个多项式的次数。三、整式1、单项式和多项式统称为整式。2、单项式或多项式都是整式。3、整式不确定是单项式。4、整式不确定是多项
3、式。5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。四、整式的加减1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法安排率。2、几个整式相加减,关键是正确地运用去括号法则,然后精确合并同类项。3、几个整式相加减的一般步骤:(1)列出代数式:用括号把每个整式括起来,再用加减号连接。(2)按去括号法则去括号。(3)合并同类项。4、代数式求值的一般步骤:(1)代数式化简。(2)代入计算(3)对于某些特别的代数式,可采纳“整体代入”进展计算。五、同底数幂的乘法1、n个一样因式(或因数)a相乘,记作an,读作a的n次方(幂),其中a为底数,n为指数,an的结果叫做幂。2、底数一样
4、的幂叫做同底数幂。3、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。即:aman=am+n。4、此法则也可以逆用,即:am+n = aman。5、开场底数不一样的幂的乘法,假如可以化成底数一样的幂的乘法,先化成同底数幂再运用法则。六、幂的乘方1、幂的乘方是指几个一样的幂相乘。(am)n表示n个am相乘。2、幂的乘方运算法则:幂的乘方,底数不变,指数相乘。(am)n =amn。3、此法则也可以逆用,即:amn =(am)n=(an)m。七、积的乘方1、积的乘方是指底数是乘积形式的乘方。2、积的乘方运算法则:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。即(ab)n=an
5、bn。3、此法则也可以逆用,即:anbn =(ab)n。八、三种“幂的运算法则”异同点1、共同点:(1)法则中的底数不变,只对指数做运算。(2)法则中的底数(不为零)和指数具有普遍性,即可以是数,也可以是式(单项式或多项式)。(3)对于含有3个或3个以上的运算,法则仍旧成立。2、不同点:(1)同底数幂相乘是指数相加。(2)幂的乘方是指数相乘。(3)积的乘方是每个因式分别乘方,再将结果相乘。九、同底数幂的除法1、同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即:aman=am-n(a0)。2、此法则也可以逆用,即:am-n = aman(a0)。十、零指数幂1、零指数幂的意义:任何不等于
6、0的数的0次幂都等于1,即:a0=1(a0)。十一、负指数幂1、任何不等于零的数的p次幂,等于这个数的p次幂的倒数,即:注:在同底数幂的除法、零指数幂、负指数幂中底数不为0。十二、整式的乘法(一)单项式与单项式相乘1、单项式乘法法则:单项式与单项式相乘,把它们的系数、一样字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。2、系数相乘时,留意符号。3、一样字母的幂相乘时,底数不变,指数相加。4、对于只在一个单项式中含有的字母,连同它的指数一起写在积里,作为积的因式。5、单项式乘以单项式的结果仍是单项式。6、单项式的乘法法则对于三个或三个以上的单项式相乘同样适用。(二)单项式与多项式相乘1
7、、单项式与多项式乘法法则:单项式与多项式相乘,就是根据安排率用单项式去乘多项式中的每一项,再把所得的积相加。即:m(a+b+c)=ma+mb+mc。2、运算时留意积的符号,多项式的每一项都包括它前面的符号。3、积是一个多项式,其项数与多项式的项数一样。4、混合运算中,留意运算依次,结果有同类项时要合并同类项,从而得到最简结果。(三)多项式与多项式相乘1、多项式与多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。即:(m+n)(a+b)=ma+mb+na+nb。2、多项式与多项式相乘,必需做到不重不漏。相乘时,要按确定的依次进展,即一个多项式的每
8、一项乘以另一个多项式的每一项。在未合并同类项之前,积的项数等于两个多项式项数的积。3、多项式的每一项都包含它前面的符号,确定积中每一项的符号时应用“同号得正,异号得负”。4、运算结果中有同类项的要合并同类项。5、对于含有同一个字母的一次项系数是1的两个一次二项式相乘时,可以运用下面的公式简化运算:(x+a)(x+b)=x2+(a+b)x+ab。十三、平方差公式1、(a+b)(a-b)=a2-b2,即:两数和与这两数差的积,等于它们的平方之差。2、平方差公式中的a、b可以是单项式,也可以是多项式。3、平方差公式可以逆用,即:a2-b2=(a+b)(a-b)。4、平方差公式还能简化两数之积的运算,
9、解这类题,首先看两个数能否转化成(a+b)(a-b)的形式,然后看a2与b2是否简洁计算。十四、完全平方公式1、即:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。2、公式中的a,b可以是单项式,也可以是多项式。3、驾驭理解完全平方公式的变形公式:(1)(2)(3)4、完全平方式:我们把形如:的二次三项式称作完全平方式。5、当计算较大数的平方时,利用完全平方公式可以简化数的运算。6、完全平方公式可以逆用,即:十五、整式的除法(一)单项式除以单项式的法则1、单项式除以单项式的法则:一般地,单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连
10、同它的指数一起作为商的一个因式。2、根据法则可知,单项式相除与单项式相乘计算方法类似,也是分成系数、一样字母与不一样字母三局部分别进展考虑。(二)多项式除以单项式的法则1、多项式除以单项式的法则:多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。用字母表示为:2、多项式除以单项式,留意多项式各项都包括前面的符号。第二章平行线与相交线余角余角补角补角角两线相交对顶角平行线与相交线同位角三线八角内错角同旁内角平行线的断定平行线平行线的性质尺规作图一、平行线与相交线平行线:在同一平面内,不相交的两条直线叫做平行线。若两条直线只有一个公共点,我们称这两条直线为相交线。二、余角与
11、补角1、假如两个角的和是直角,那么称这两个角互为余角,简称为互余,称其中一个角是另一个角的余角。2、假如两个角的和是平角,那么称这两个角互为补角,简称为互补,称其中一个角是另一个角的补角。3、互余和互补是指两角和为直角或两角和为平角,它们只与角的度数有关,与角的位置无关。4、余角和补角的性质:同角或等角的余角相等,同角或等角的补角相等。5、余角和补角的性质用数学语言可表示为:(1)则(同角的余角(或补角)相等)。(2)且则(等角的余角(或补角)相等)。6、余角和补角的性质是证明两角相等的一个重要方法。三、对顶角1、两条直线相交成四个角,其中不相邻的两个角是对顶角。2、一个角的两边分别是另一个角
12、的两边的反向延长线,这两个角叫做对顶角。3、对顶角的性质:对顶角相等。4、对顶角的性质在今后的推理说明中应用特别广泛,它是证明两个角相等的根据及重要桥梁。5、对顶角是从位置上定义的,对顶角确定相等,但相等的角不确定是对顶角。四、垂线及其性质1、垂线:两条直线相交成直角时,叫做相互垂直,其中一条叫做另一条的垂线。2、垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。性质2:连接直线外一点与直线上各点的全部线段中,垂线段最短。五、同位角、内错角、同旁内角1、两条直线被第三条直线所截,形成了8个角。2、同位角:两个角都在两条直线的同侧,并且在第三条直线(截线)的同旁,这样的一对角叫做同位角。
13、3、内错角:两个角都在两条直线之间,并且在第三条直线(截线)的两旁,这样的一对角叫做内错角。4、同旁内角:两个角都在两条直线之间,并且在第三条直线(截线)的同旁,这样的一对角叫同旁内角。5、这三种角只与位置有关,与大小无关,通常状况下,它们之间不存在固定的大小关系。六、六类角1、补角、余角、对顶角、同位角、内错角、同旁内角六类角都是对两角来说的。2、余角、补角只有数量上的关系,与其位置无关。3、同位角、内错角、同旁内角只有位置上的关系,与其数量无关。4、对顶角既有数量关系,又有位置关系。七、平行线的断定方法1、同位角相等,两直线平行。2、内错角相等,两直线平行。3、同旁内角互补,两直线平行。4
14、、在同一平面内,假如两条直线都平行于第三条直线,那么这两条直线平行。5、在同一平面内,假如两条直线都垂直于第三条直线,那么这两条直线平行。八、平行线的性质1、两直线平行,同位角相等。2、两直线平行,内错角相等。3、两直线平行,同旁内角互补。4、平行线的断定与性质具备互逆的特征,其关系如下:在应用时要正确区分主动向上的题设和结论。九、尺规作线段和角1、在几何里,只用没有刻度的直尺和圆规作图称为尺规作图。2、尺规作图是最根本、最常见的作图方法,通常叫根本作图。3、尺规作图中直尺的功能是:(1)在两点间连接一条线段;(2)将线段向两方延长。4、尺规作图中圆规的功能是:(1)以随意一点为圆心,随意长为
15、半径作一个圆;(2)以随意一点为圆心,随意长为半径画一段弧;第三章变量之间的关系自变量变量的概念因变量变量之间的关系表格法关系式法变量的表达方法速度时间图象图象法路程时间图象一、变量、自变量、因变量1、在某一改变过程中,不断改变的量叫做变量。2、假如一个变量y随另一个变量x的改变而改变,则把x叫做自变量,y叫做因变量。3、自变量与因变量确实定:(1)自变量是先发生改变的量;因变量是后发生改变的量。(2)自变量是主动发生改变的量,因变量是随着自变量的改变而发生改变的量。(3)利用详细情境来体会两者的依存关系。二、表格1、表格是表达、反映数据的一种重要形式,从中获得信息、探讨不同量之间的关系。(1
16、)首先要明确表格中所列的是哪两个量;(2)分清哪一个量为自变量,哪一个量为因变量;(3)结合实际情境理解它们之间的关系。2、绘制表格表示两个变量之间关系(1)列表时首先要确定各行、各列的栏目;(2)一般有两行,第一行表示自变量,第二行表示因变量;(3)写出栏目名称,有时还根据问题内容写上单位;(4)在第一行列出自变量的各个改变取值;第二行对应列出因变量的各个改变取值。(5)一般状况下,自变量的取值从左到右应按由小到大的依次排列,这样便于反映因变量与自变量之间的关系。三、关系式1、用关系式表示因变量与自变量之间的关系时,通常是用含有自变量(用字母表示)的代数式表示因变量(也用字母表示),这样的数
17、学式子(等式)叫做关系式。2、关系式的写法不同于方程,必需将因变量单独写在等号的左边。3、求两个变量之间关系式的途径:(1)将自变量和因变量看作两个未知数,根据题意列出关于未知数的方程,并最终写成关系式的形式。(2)根据表格中所列的数据写出变量之间的关系式;(3)根据实际问题中的根本数量关系写出变量之间的关系式;(4)根据图象写出与之对应的变量之间的关系式。4、关系式的应用:(1)利用关系式能根据任何一个自变量的值求出相应的因变量的值;(2)同样也可以根据任何一个因变量的值求出相应的自变量的值;(3)根据关系式求值的本质就是解一元一次方程(求自变量的值)或求代数式的值(求因变量的值)。四、图象
18、1、图象是刻画变量之间关系的又一重要方法,其特点是特别直观、形象。2、图象能清晰地反映出因变量随自变量改变而改变的状况。3、用图象表示变量之间的关系时,通常用程度方向的数轴(又称横轴)上的点表示自变量,用竖直方向的数轴(又称纵轴)上的点表示因变量。4、图象上的点:(1)对于某个详细图象上的点,过该点作横轴的垂线,垂足的数据即为该点自变量的取值;(2)过该点作纵轴的垂线,垂足的数据即为该点相应因变量的值。(3)由自变量的值求对应的因变量的值时,可在横轴上找到表示自变量的值的点,过这个点作横轴的垂线与图象交于某点,再过交点作纵轴的垂线,纵轴上垂足所表示的数据即为因变量的相应值。(4)把以上作垂线的
19、过程过来可由因变量的值求得相应的自变量的值。5、图象理解(1)理解图象上某一个点的意义,一要看横轴、纵轴分别表示哪个变量;(2)看该点所对应的横轴、纵轴的位置(数据);(3)从图象上还可以得到随着自变量的改变,因变量的改变趋势。五、速度图象1、弄清哪一条轴(通常是纵轴)表示速度,哪一条轴(通常是横轴)表示时间;2、精确读懂不同走向的线所表示的意义:(1)上升的线:从左向右呈上升状的线,其代表速度增加;(2)程度的线:与程度轴(横轴)平行的线,其代表匀速行驶或静止;(3)下降的线:从左向右呈下降状的线,其代表速度减小。六、路程图象1、弄清哪一条轴(通常是纵轴)表示路程,哪一条轴(通常是横轴)表示
20、时间;2、精确读懂不同走向的线所表示的意义:(1)上升的线:从左向右呈上升状的线,其代表匀速远离起点(或已知定点);(2)程度的线:与程度轴(横轴)平行的线,其代表静止;(3)下降的线:从左向右呈下降状的线,其代表反向运动返回起点(或已知定点)。七、三种变量之间关系的表达方法与特点:表达方法特点表格法多个变量可以同时出如今同一张表格中关系式法精确地反映了因变量与自变量的数值关系图象法直观、形象地给出了因变量随自变量的改变趋势第四章三角形三角形三边关系三角形三角形内角和定理角平分线三条重要线段中线高线全等图形的概念全等三角形的性质SSS三角形SAS全等三角形全等三角形的断定ASAAASHL(适用
21、于Rt)全等三角形的应用利用全等三角形测间隔 作三角形一、三角形概念1、不在同一条直线上的三条线段首尾顺次相接所组成的图形,称为三角形,可以用符号“”表示。2、顶点是A、B、C的三角形,记作“ABC”,读作“三角形ABC”。3、组成三角形的三条线段叫做三角形的边,即边AB、BC、AC,有时也用a,b,c来表示,顶点A所对的边BC用a表示,边AC、AB分别用b,c来表示;4、A、B、C为ABC的三个内角。二、三角形中三边的关系1、三边关系:三角形随意两边之和大于第三边,随意两边之差小于第三边。用字母可表示为a+bc,a+cb,b+ca;a-bc,a-cb,b-cc,a+cb,b+ca同时成立时,
22、能组成三角形;(2)当两条较短线段之和大于最长线段时,则可以组成三角形。3、确定第三边(未知边)的取值范围时,它的取值范围为大于两边的差而小于两边的和,即.三、三角形中三角的关系1、三角形内角和定理:三角形的三个内角的和等于1800。2、三角形按内角的大小可分为三类:(1)锐角三角形,即三角形的三个内角都是锐角的三角形;(2)直角三角形,即有一个内角是直角的三角形,我们通常用“Rt”表示“直角三角形”,其中直角C所对的边AB称为直角三角表的斜边,夹直角的两边称为直角三角形的直角边。注:直角三角形的性质:直角三角形的两个锐角互余。(3)钝角三角形,即有一个内角是钝角的三角形。3、断定一个三角形的
23、形态主要看三角形中最大角的度数。4、直角三角形的面积等于两直角边乘积的一半。5、随意一个三角形都具备六个元素,即三条边和三个内角。都具有三边关系和三内角之和为1800的性质。6、三角形内角和定理包含一个等式,它是我们列出有关角的方程的重要等量关系。四、三角形的三条重要线段1、三角形的三条重要线段是指三角形的角平分线、中线和高线。2、三角形的角平分线:(1)三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。(2)随意三角形都有三条角平分线,并且它们相交于三角形内一点。3、三角形的中线:(1)在三角形中,连接一个顶点与它对边中点的线段,叫做这个三角形的中
24、线。(2)三角形有三条中线,它们相交于三角形内一点。4、三角形的高线:(1)从三角形的一个顶点向它的对边所在的直线做垂线,顶点和垂足之间的线段叫做三角形的高线,简称为三角形的高。(2)随意三角形都有三条高线,它们所在的直线相交于一点。区别相同中线平分对边三条中线交于三角形内部(1)都是线段(2)都从顶点画出(3)所在直线相交于一点角平分线平分内角三条角平分线交于三角表内部高线垂直于对边(或其延长线)锐角三角形:三条高线都在三角形内部直角三角形:其中两条恰好是直角边钝角三角形:其中两条在三角表外部五、全等图形1、两个可以重合的图形称为全等图形。2、全等图形的性质:全等图形的形态和大小都一样。3、
25、全等图形的面积或周长均相等。4、推断两个图形是否全等时,形态一样与大小相等两者缺一不行。5、全等图形在平移、旋转、折叠过程中仍旧全等。6、全等图形中的对应角和对应线段都分别相等。六、全等分割1、把一个图形分割成两个或几个全等图形叫做把一个图形全等分割。2、对一个图形全等分割:(1)首先要视察分析该图形,发觉图形的构成特点;(2)其次要大胆尝试,敢于动手,必要时可采纳计算、沟通、探讨等方法完成。七、全等三角形1、可以重合的两个三角形是全等三角形,用符号“”连接,读作“全等于”。2、用“”连接的两个全等三角形,表示对应顶点的字母写在对应的位置上。3、全等三角形的性质:全等三角形的对应边、对应角相等
26、。这是今后证明边、角相等的重要根据。4、两个全等三角形,精确断定对应边、对应角,即找准对应顶点是关键。八、全等三角形的断定1、三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。2、两角和它们的夹边对应相等的两个三角形全等,简写为“角边角”或“ASA”。3、两角和其中一角的对边对应相等的两个三角形全等,简写为“角角边”或“AAS”。4、两边和它们的夹角对应相等的两个三角形全等,简写为“边角边”或“SAS”。5、留意以下内容(1)三角形全等的断定条件中必需是三个元素,并且确定有一组边对应相等。(2)三边对应相等,两边及夹角对应相等,一边及随意两角对应相等,这样的两个三角形全等。(3)两边
27、及其中一边的对角对应相等不能断定两三角形全等。6、娴熟运用以下内容(1)娴熟运用三角形断定条件,是解决此类题的关键。(2)已知“SS”,可考虑A:第三边,即“SSS”;B:夹角,即“SAS”。(3)已知“SA”,可考虑A:另一角,即“AAS”或“ASA”;B:夹角的另一边,即“SAS”。(4)已知“AA”,可考虑A:随意一边,即“AAS”或“ASA”。7、三角形的稳定性:根据三角形全等的断定方法(SSS)可知,只要三角形三边的长度确定了,这个三角形的形态和大小就完全确定了,三角形的这特性质叫做三角形的稳定性。九、作三角形1、作图题的一般步骤:(1)已知,即将条件详细化;(2)求作,即详细叙述所
28、作图形应满意的条件;(3)分析,即找寻作图方法的途径(通常是画出草图);(4)作法,即根据分析所得的作图方法,作出正式图形,并依次叙述作图过程;(5)证明,即验证所作图形的正确性(通常省略不写)。2、娴熟以下三种三角形的作法及根据。(1)已知三角形的两边及其夹角,作三角形。(2)已知三角形的两角及其夹边,作三角形。(3)已知三角形的三边,作三角形。十、利用三角形全等测间隔 1、利用三角形全等测间隔 ,事实上是利用已有的全等三角形,或构造出全等三角形,运用全等三角形的性质(对应边相等),把较难测量或无法测量的间隔 转化成已知线段或较简洁测量的线段的长度,从而得到被测间隔 。2、运用全等三角形解决
29、实际问题的步骤:(1)先明确实际问题应当用哪些几何知道解决;(2)根据实际问题抽象出几何图形;(3)结合图形和题意分析已知条件;(4)找到解决问题的途径。十一、直角三角形全等的条件1、在直角三角形中,斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜边、直角边”或“HL”。2、“HL”是直角三角形特有的断定条件,对非直角三角形是不成立的;3、书写时要标准,即在三角形前面必需加上“Rt”字样。十二、分析-综合法1、我们在平常解几何题时,采纳的解题方法通常有两种,综合法与分析法。2、综合法:从问题的条件动身,通过分析条件,根据所学学问,逐步探究,直到得出问题的结论。3、分析法:从问题的结论动
30、身,不断找寻使结论成立的条件,直至已知条件。4、在详细解题中,通常是两种方法结合起来运用,既运用综合法,又运用分析法。第五章生活中的轴对称轴对称图形轴对称分类轴对称角平分线轴对称实例线段的垂直平分线等腰三角形等边三角形生活中的轴对称轴对称的性质轴对称的性质镜面对称的性质图案设计轴对称的应用镶边与剪纸一、轴对称图形1、假如一个图形沿一条直线折叠后,直线两旁的局部可以完全重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。2、理解轴对称图形要抓住以下几点:(1)指一个图形;(2)存在一条直线(对称轴);(3)图形被直线分成的两局部相互重合;(4)轴对称图形的对称轴有的只有一条,有的则存在多条;(
31、5)线段、角、长方形、正方形、菱形、等腰三角形、圆都是轴对称图形;二、轴对称1、对于两个图形,假如沿一条直线对折后,它们能相互重合,那么称这两个图形成轴对称,这条直线就是对称轴。可以说成:这两个图形关于某条直线对称。2、理解轴对称应留意:(1)有两个图形;(2)沿某一条直线对折后可以完全重合;(3)轴对称的两个图形确定是全等形,但两个全等的图形不确定是轴对称图形;(4)对称轴是直线而不是线段;轴对称图形轴对称区分是一个图形自身的对称特性是两个图形之间的对称关系对称轴可能不止一条对称轴只有一条共同点沿某条直线对折后都可以相互重合假如轴对称的两个图形看作一个整体,那么它就是一个轴对称图形;假如把轴
32、对称图形分成两局部(两个图形),那么这两局部关于这条对称轴成轴对称。三、角平分线的性质1、角平分线所在的直线是该角的对称轴。2、性质:角平分线上的点到这个角的两边的间隔 相等。四、线段的垂直平分线1、垂直于一条线段并且平分这条线段的直线叫做这条线段的垂直平分线,又叫线段的中垂线。2、性质:线段垂直平分线上的点到这条线段两端点的间隔 相等。五、等腰三角形1、有两条边相等的三角形叫做等腰三角形;2、相等的两条边叫做腰;另一边叫做底边;3、两腰的夹角叫做顶角,腰与底边的夹角叫做底角;4、三条边都相等的三角形也是等腰三角形。5、等腰三角形是轴对称图形,有一条对称轴(等边三角形除外),其底边上的高或顶角
33、的平分线,或底边上的中线所在的直线都是它的对称轴。6、等腰三角形的三条重要线段不是它的对称轴,它们所在的直线才是等腰三角形的对称轴。7、等腰三角形底边上的高,底边上的中线,顶角的平分线相互重合,简称为“三线合一”。8、“三线合一”是等腰三角形所特有的性质,一般三角形不具备这一重要性质。9、“三线合一”是等腰三角形特有的性质,是指其顶角平分线,底边上的高和中线,这三线,并非其他。10、等腰三角形的两个底角相等,简写成“等边对等角”。11、断定一个三角形是等腰三角形常用的两种方法:(1)两条边相等的三角形是等腰三角形;(2)假如一个三角形有两个角相等,那么它们所对的边也相等相等,简写为“等角对等边
34、”。六、等边三角形1、等边三角形是指三边都相等的三角形,又称正三角形,是最特别的三角形。2、等边三角形是底与腰相等的等腰三角形,所以等边三角形具备等腰三角形的全部性质。3、等边三角形有三条对称轴,三角形的高、角平分线和中线所在的直线都是它的对称轴。4、等边三角形的三边都相等,三个内角都是600。图形定义性质等腰三角形有两边相等的三角形1、两腰相等,两底角相等。2、顶角=1800-2底角。底角=(1800-顶角)/2。3、顶角的平分线、底边上的中线和高“三线合一”。4、轴对称图形,有一条对称轴。等边三角形(又叫正三角形)三边都相等的三角形1、三边都相等,三内角相等,且每个内角都等于600。2、具
35、有等腰三角形的全部性质。3、轴对称图形,有三条对称轴。七、轴对称的性质1、两个图形沿一条直线对折后,可以重合的点称为对应点(对称点),可以重合的线段称为对应线段,可以重合的角称为对应角。2、关于某条直线对称的两个图形是全等图形。3、假如两个图形关于某条直线对称,那么对应点所连的线段被对称轴垂直平分。4、假如两个图形关于某条直线对称,那么对应线段、对应角都相等。5、类似地,轴对称图形的性质有:(1)轴对称图形对应点所连的线段被对称轴垂直平分。(2)轴对称图形的对应线段、对应角相等。(3)根据轴对称图形的性质可求作轴对称图形的对应点、对应线段或对应角,并由此能补全轴对称图形。八、图案设计1、作出简
36、洁平面图形经过轴对称后的图形,事实上是轴对称图形的性质的敏捷运用。2、作出简洁平面图形经过轴对称后的图形的步骤:(1)首先要确定一个简洁平面图形上的几个特别点;(2)然后利用轴对称的性质,作出其相应的对称点(对应点所连的线段被对称轴垂直平分)。(3)分别连接其对称点,则可得其对称图形。3、表达方式(以点M为例):(1)过点M作对称轴的垂线,垂足为A;(2)延长MA到M到,使MA=MA,则点M就是点M关于直线的对称点。(3)在困难的作图中,也可以叙述为:作出点M关于直线的对称点M.4、在运用轴对称设计图案时,就留意以下几点:(1)要有明确的设计意图;(2)创意要新奇独特;(3)设计出的图案要符合
37、要求;(4)能清晰地表达自己的设计意图和制作过程。5、图案的设计除采纳对称的手段外,通常还综合采纳旋转、倒置、重复等手段和形式。6、设计的图案要美观、大方,主动向上,反映时代特色。九、镜面对称1、镜面对称的有关性质:(1)任何一个平面图形(物体)在镜子中的像与它是可以重合的。因此,一个轴对称图形在镜子中的像仍是轴对称图形。(2)若一个平面图形正对镜面,则其左(右)侧在镜中的像是其右(左)侧;(3)若一个平面图形(物体)垂直于镜面摆放,则靠近镜面的局部,其像也靠近镜面;2、关于数字0、1、3、8在镜面中像的两个结论:(1)假如写数字的纸条垂直于镜面摆放,则纸条上写的0、1、3、8所成的像与原来的
38、数字完全一样。(2)假如纸条正对镜面摆放,则纸条上写的0、1、8这三个数字在镜中的像和原来的数字完全一样。3、像与物体到镜面的间隔 相等。4、像与物体的对应点连线被镜面垂直平分。5、由镜中的时间来推断真实时间是近几年来中考的一个热点。时间的表示有用一般数字表示的,也有干脆用钟表来表示的。在推断时,大家要留意敏捷利用镜面对称的学问来加以解决。第六章概率必定事务事务不行能事务不确定事务概率等可能性嬉戏的公允性概率的定义概率几何概率设计概率模型一、事务1、事务分为必定事务、不行能事务、不确定事务。2、必定事务:事先就能确定确定会发生的事务。也就是指该事务每次确定发生,不行能不发生,即发生的可能是10
39、0%(或1)。3、不行能事务:事先就能确定确定不会发生的事务。也就是指该事务每次都完全没有时机发生,即发生的可能性为零。4、不确定事务:事先无法确定会不会发生的事务,也就是说该事务可能发生,也可能不发生,即发生的可能性在0和1之间。5、三种事务都是相对于事务发生的可能性来说的,若事务发生的可能性为100%,则为必定事务;若事务发生的可能性为0,则为不行能事务;若事务不确定发生,即发生的可能性在01之间,则为不确定事务。6、简洁地说,必定事务是确定会发生的事务;不行能事务是确定不行能发生的事务;不确定事务是指有可能发生,也有可能不发生的事务。7、表示事务发生的可能性的方法通常有三种:(1)用语言
40、叙述可能性的大小。(2)用图例表示。(3)用概率表示。二、等可能性1、等可能性:是指几种事务发生的可能性相等。2、嬉戏规则的公允性:就是看嬉戏双方的结果是否具有等可能性。(1)首先要看嬉戏所出现的结果的两种状况中有没有必定事务或不行能事务,若有一个必定事务或不行能事务,则嬉戏是不公允的;(2)其次假如两个事务都为不确定事务,则要看这两个事务发生的可能性是否一样;即看双方获胜的可能性是否一样,只有双方获胜的可能性一样,嬉戏才是公允的。(3)嬉戏是否公允,并不确定是嬉戏结果的两种状况发生的可能性都是二分之一,只要对嬉戏双方获胜的事务发生的可能性一样即可。三、概率1、概率:是反映事务发生的可能性的大
41、小的量,它是一个比例数,一般用P来表示,P(A)=事务A可能出现的结果数/全部可能出现的结果数。2、必定事务发生的概率为1,记作P(必定事务)=1;3、不行能事务发生的概率为0,记作P(不行能事务)=0;4、不确定事务发生的概率在01之间,记作0P(不确定事务)1。5、概率是对“可能性”的定量描绘,给人以更干脆的感觉。6、概率并不供应确定无误的结论,这是由不确定现象造成的。7、概率的计算:(1)干脆数数法:即干脆数出全部可能出现的结果的总数n,再数出事务A可能出现的结果数m,利用概率公式干脆得出事务A的概率。(2)对于较困难的题目,我们可采纳“列表法”或画“树状图法”。四、几何概率1、事务A发
42、生的概率等于此事务A发生的可能结果所组成的面积(用SA表示)除以全部可能结果组成图形的面积(用S全表示),所以几何概率公式可表示为P(A)=SA/S全,这是因为事务发生在每个单位面积上的概率是一样的。2、求几何概率:(1)首先分析事务所占的面积与总面积的关系;(2)然后计算出各局部的面积;(3)最终代入公式求出几何概率。五、设计概率模型(嬉戏或事务)1、设计符合要求的简洁概率模型(嬉戏或事务)是对概率计算的逆向运用。2、设计通常分四步:(1)首先分析设计应符合什么条件;(2)其次确定选用什么图形表示更合理;(3)然后再按确定要求和操作阅历来设计模型;(4)最终再通过计算或其他方法来验证设计的模
43、型是否符合条件。尺规作图尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。最根本,最常用的尺规作图,通常称根本作图。一些困难的尺规作图都是由根本作图组成的。五种根本作图:1、 作一条线段等于已知线段; 2、 作一个角等于已知角; 3、作已知线段的垂直平分线; 4、作已知角的角平分线; 5、过一点作已知直线的垂线;题目一:作一条线段等于已知线段。已知:如图,线段a .求作:线段AB,使AB = a .作法:(1) 作射线AP;(2) 在射线AP上截取AB=a .则线段AB就是所求作的图形。题目二:作已知线段的中点。已知:如图,线段MN.求作:点O,使MO=NO(即O是MN的中点).作法:()分别以M、N为圆心,大于的一样线段为半径画弧,两弧相交于P,Q;()连接PQ交