《2016年文数高考试题全国卷2含答案.docx》由会员分享,可在线阅读,更多相关《2016年文数高考试题全国卷2含答案.docx(11页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2019年一般高等学校招生全国统一考试(卷2)文科数学留意事项:1本试卷分第卷(选择题)和第卷(非选择题)两局部。答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。2答复第卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号框涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号框。写在本试卷上无效。3答第卷时,将答案写在答题卡上,写在本试卷上无效。4考试完毕,将试题卷和答题卡一并交回。第卷一、 选择题:本大题共12小题。每小题5分,在每个小题给出的四个选项中,只有一项是符合要求的。(1)已知集合,则D(A)(B)(C)(D)(2)设复数z满意,则=(A)(B)(C)(D
2、) (3) 函数的局部图像如图所示,则A(A)(B)(C)(D)(4) 体积为8的正方体的顶点都在同一球面上,则该球面的外表积为(A)(B)(C)(D)(5) 设F为抛物线C:y2=4x的焦点,曲线y=(k0)与C交于点P,PFx轴,则k=(A)(B)1 (C)(D)2(6) 圆x2+y22x8y+13=0的圆心到直线ax+y1=0的间隔 为1,则a=(A)(B)(C)(D)2(7) 如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的外表积为(A)20(B)24(C)28(D)32(8) 某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至
3、少须要等待15秒才出现绿灯的概率为学.科网(A)(B)(C)(D)(9)中国古代有计算多项式值得秦九韶算法,右图是实现该算法的程序框图执行该程序框图,若输入的a为2,2,5,则输出的s=(A)7(B)12(C)17(D)34(10) 下列函数中,其定义域和值域分别与函数y=10lgx的定义域和值域一样的是(A)y=x(B)y=lgx(C)y=2x(D)(11) 函数的最大值为(A)4(B)5(C)6(D)7(12) 已知函数f(x)(xR)满意f(x)=f(2-x),若函数y=|x2-2x-3| 与y=f(x) 图像的交点为(x1,y1),(x2,y2),(xm,ym),则(A)0 (B)m
4、(C) 2m (D) 4m二填空题:共4小题,每小题5分.(13) 已知向量a=(m,4),b=(3,-2),且ab,则m=_. (14) 若x,y满意约束条件,则z=x-2y的最小值为_(15)ABC的内角A,B,C的对边分别为a,b,c,若,a=1,则b=_.(16)有三张卡片,分别写有1和2,1和3,2和3. 学.科网甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上一样的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上一样的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是_.三、解答题:解容许写出文字说明,证明过程或演算步骤(17)(本小题满分
5、12分)等差数列中,(I)求的通项公式;(II)设=,求数列的前10项和,其中x表示不超过x的最大整数,如0.9=0,2.6=2(18)(本小题满分12分)某险种的根本保费为a(单位:元),接着购置该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:学科.网随机调查了该险种的200名续保人在一年内的出险状况,得到如下统计表:(I)记A为事务:“一续保人本年度的保费不高于根本保费”。求P(A)的估计值;(II)记B为事务:“一续保人本年度的保费高于根本保费但不高于根本保费的160”.求P(B)的估计值;(III)求续保人本年度的平均保费估计值.(19)(本小题满分12分)
6、如图,菱形ABCD的对角线AC与BD交于点O,点E、F分别在AD,CD上,AE=CF,EF交BD于点H,将沿EF折到的位置.(I)证明:;(II)若,求五棱锥体积.(20)(本小题满分12分) 已知函数.(I)当时,求曲线在处的切线方程;(II)若当时,求的取值范围.(21)(本小题满分12分)已知A是椭圆E:的左顶点,斜率为的直线交E于A,M两点,点N在E上,.(I)当时,学.科网求的面积(II)当2时,证明:.请考生在第2224题中任选一题作答,假如多做,则按所做的第一题计分.(22)(本小题满分10分)选修4-1:几何证明选讲如图,在正方形ABCD中,E,G分别在边DA,DC上(不与端点
7、重合),且DE=DG,过D点作DFCE,垂足为F. ()证明:B,C,G,F四点共圆;()若AB=1,E为DA的中点,求四边形BCGF的面积.(23)(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy中,圆C的方程为.()以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,学.科网求C的极坐标方程;()直线l的参数方程是(t为参数),l与C交于A,B两点,,求l的斜率.(24)(本小题满分10分)选修4-5:不等式选讲已知函数,M为不等式的解集. 学科.网()求M;()证明:当a,b时,.2019年一般高等学校招生全国统一考试文科数学答案第卷一. 选择题(1)D(2)C (3)
8、A (4) A (5)D(6) A (7) C (8) B (9)C(10) D (11)B (12) B二填空题(13)【答案】(14)【答案】(15)【答案】(16)【答案】1和3三、解答题(17)(本小题满分12分)试题分析:() 依据等差数列的性质求,从而求得;()依据已知条件求,再求数列的前10项和.试题解析:()设数列的公差为d,学.科网由题意有,解得,所以的通项公式为.()由()知,当n=1,2,3时,;当n=4,5时,;当n=6,7,8时,;当n=9,10时,所以数列的前10项和为.考点:等茶数列的性质,数列的求和.(18) (本小题满分12分)()事务A发生当且仅当一年内出险
9、次数小于2.由所给数据知,一年内险次数小于2的频率为,故P(A)的估计值为0.55.()事务B发生当且仅当一年内出险次数大于1且小于4.由是给数据知,学.科网一年内出险次数大于1且小于4的频率为,故P(B)的估计值为0.3.()由题所求分布列为:保费0.85aa1.25a1.5a1.75a2a频率0.300.250.150.150.100.05调查200名续保人的平均保费为因此,续保人本年度平均保费估计值为1.1925a.考点:样本的频率、平均值的计算.(19)(本小题满分12分)(I)由已知得,又由得,故由此得,所以.(II)由得由得所以于是故由(I)知,又,所以平面于是又由,所以,平面又由
10、得五边形的面积所以五棱锥体积(20)(本小题满分12分)(I)的定义域为.当时,曲线在处的切线方程为(II)当时,等价于令,则(i)当,时,故在上单调递增,因此;(ii)当时,令得由和得,故当时,在单调递减,学.科网因此.综上,的取值范围是考点:导数的几何意义,函数的单调性.(21)(本小题满分12分)()设,则由题意知.由已知及椭圆的对称性知,直线的倾斜角为,又,因此直线的方程为.将代入得,解得或,所以.因此的面积.(2) 将直线的方程代入得由得,故.由题设,直线的方程为,故同理可得.由得,即.设,则是的零点,所以在单调递增,又,因此在有唯一的零点,且零点在内,所以.请考生在22、23、24
11、题中任选一题作答,假如多做,则按所做的第一题计分,做答时请写清题号(22)(本小题满分10分)选修4-1:几何证明选讲(I)因为,所以则有所以由此可得由此所以四点共圆.(II)由四点共圆,知,连结,由为斜边的中点,知,故因此四边形的面积是面积的2倍,即(23)(本小题满分10分)选修44:坐标系与参数方程(I)由可得的极坐标方程(II)在(I)中建立的极坐标系中,直线的极坐标方程为由所对应的极径分别为将的极坐标方程代入的极坐标方程得于是由得,所以的斜率为或.(24)(本小题满分10分)选修45:不等式选讲试题解析:(I)当时,由得解得;当时,;当时,学.科网由得解得.所以的解集.(II)由(I)知,当时,从而因此考点:肯定值不等式,不等式的证明.