2010年全国统一高考数学试卷理科全国卷ii含超详细答案1.docx

上传人:叶*** 文档编号:34900446 上传时间:2022-08-19 格式:DOCX 页数:24 大小:252.77KB
返回 下载 相关 举报
2010年全国统一高考数学试卷理科全国卷ii含超详细答案1.docx_第1页
第1页 / 共24页
2010年全国统一高考数学试卷理科全国卷ii含超详细答案1.docx_第2页
第2页 / 共24页
点击查看更多>>
资源描述

《2010年全国统一高考数学试卷理科全国卷ii含超详细答案1.docx》由会员分享,可在线阅读,更多相关《2010年全国统一高考数学试卷理科全国卷ii含超详细答案1.docx(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2010年全国统一高考数学试卷(理科)(新课标)一、选择题(共12小题,每小题5分,满分60分)1(5分)已知集合A=xR|x|2,则AB=()A(0,2)B0,2C0,2D0,1,22(5分)已知复数,是z的共轭复数,则=()ABC1D23(5分)曲线y=在点(1,1)处的切线方程为()Ay=2x+1By=2x1Cy=2x3Dy=2x24(5分)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,),角速度为1,那么点P到x轴间隔 d关于时间t的函数图象大致为()ABCD5(5分)已知命题p1:函数y=2x2x在R为增函数,p2:函数y=2x+2x在R为减函数,则在命题q1:p1p

2、2,q2:p1p2,q3:(p1)p2和q4:p1(p2)中,真命题是()Aq1,q3Bq2,q3Cq1,q4Dq2,q46(5分)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为()A100B200C300D4007(5分)假如执行右面的框图,输入N=5,则输出的数等于()ABCD8(5分)设偶函数f(x)满意f(x)=2x4(x0),则x|f(x2)0=()Ax|x2或x4Bx|x0或x4Cx|x0或x6Dx|x2或x29(5分)若,是第三象限的角,则=()ABC2D210(5分)设三棱柱的侧棱垂直于底面,全部

3、棱长都为a,顶点都在一个球面上,则该球的外表积为()Aa2BCD5a211(5分)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()A(1,10)B(5,6)C(10,12)D(20,24)12(5分)已知双曲线E的中心为原点,P(3,0)是E的焦点,过P的直线l与E相交于A,B两点,且AB的中点为N(12,15),则E的方程式为()ABCD二、填空题(共4小题,每小题5分,满分20分)13(5分)设y=f(x)为区间0,1上的连续函数,且恒有0f(x)1,可以用随机模拟方法近似计算积分,先产生两组(每组N个)区间0,1上的匀称随机数x1,x2,xN和y1

4、,y2,yN,由此得到N个点(xi,yi)(i=1,2,N),再数出其中满意yif(xi)(i=1,2,N)的点数N1,那么由随机模拟方案可得积分的近似值为14(5分)正视图为一个三角形的几何体可以是(写出三种)15(5分)过点A(4,1)的圆C与直线xy=1相切于点B(2,1),则圆C的方程为16(5分)在ABC中,D为边BC上一点,BD=DC,ADB=120,AD=2,若ADC的面积为,则BAC=三、解答题(共8小题,满分90分)17(12分)设数列满意a1=2,an+1an=322n1(1)求数列an的通项公式;(2)令bn=nan,求数列bn的前n项和Sn18(12分)如图,已知四棱锥

5、PABCD的底面为等腰梯形,ABCD,ACBD,垂足为H,PH是四棱锥的高,E为AD中点(1)证明:PEBC(2)若APB=ADB=60,求直线PA与平面PEH所成角的正弦值19(12分)为调查某地区老人是否须要志愿者供应扶植,用简洁随机抽样方法从该地区调查了500位老年人,结果如表: 性别是否须要志愿 男女须要 4030不须要 160270(1)估计该地区老年人中,须要志愿者供应扶植的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否须要志愿者供应扶植与性别有关?(3)依据(2)的结论,能否供应更好的调查方法来估计该地区老年人中,须要志愿扶植的老年人的比例?说明理由附:P(k2k)

6、0.00.0100.001k3.8416.63510.82820(12分)设F1,F2分别是椭圆的左、右焦点,过F1斜率为1的直线与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列(1)求E的离心率;(2)设点P(0,1)满意|PA|=|PB|,求E的方程21(12分)设函数f(x)=ex1xax2(1)若a=0,求f(x)的单调区间;(2)若当x0时f(x)0,求a的取值范围22(10分)如图:已知圆上的弧,过C点的圆的切线与BA的延长线交于E点,证明:()ACE=BCD()BC2=BECD23(10分)已知直线C1(t为参数),C2(为参数),()当=时,求C1与C2的交点

7、坐标;()过坐标原点O做C1的垂线,垂足为A,P为OA中点,当改变时,求P点的轨迹的参数方程,并指出它是什么曲线24(10分)设函数f(x)=|2x4|+1()画出函数y=f(x)的图象:()若不等式f(x)ax的解集非空,求a的取值范围2010年全国统一高考数学试卷(理科)(新课标)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1(5分)(2010宁夏)已知集合A=xR|x|2,则AB=()A(0,2)B0,2C0,2D0,1,2【分析】先化简集合A和B,留意集合B中的元素是整数,再依据两个集合的交集的意义求解【解答】解:A=xR|x|2,=xR|2x2,故AB=0,1,

8、2应选D2(5分)(2010宁夏)已知复数,是z的共轭复数,则=()ABC1D2【分析】因为,所以先求|z|再求的值【解答】解:由可得另解:故选A3(5分)(2010宁夏)曲线y=在点(1,1)处的切线方程为()Ay=2x+1By=2x1Cy=2x3Dy=2x2【分析】欲求在点(1,1)处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率从而问题解决【解答】解:y=,y=,所以k=y|x=1=2,得切线的斜率为2,所以k=2;所以曲线y=f(x)在点(1,1)处的切线方程为:y+1=2(x+1),即y=2x+1故选A4(5分)(20

9、10新课标)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,),角速度为1,那么点P到x轴间隔 d关于时间t的函数图象大致为()ABCD【分析】本题的求解可以利用解除法,依据某详细时刻点P的位置到到x轴间隔 来确定答案【解答】解:通过分析可知当t=0时,点P到x轴间隔 d为,于是可以解除答案A,D,再依据当时,可知点P在x轴上此时点P到x轴间隔 d为0,解除答案B,故应选C5(5分)(2010宁夏)已知命题p1:函数y=2x2x在R为增函数,p2:函数y=2x+2x在R为减函数,则在命题q1:p1p2,q2:p1p2,q3:(p1)p2和q4:p1(p2)中,真命题是()Aq1,

10、q3Bq2,q3Cq1,q4Dq2,q4【分析】先推断命题p1是真命题,P2是假命题,故p1p2为真命题,(p2)为真命题,p1(p2)为真命题【解答】解:易知p1是真命题,而对p2:y=2xln2ln2=ln2(),当x0,+)时,又ln20,所以y0,函数单调递增;同理得当x(,0)时,函数单调递减,故p2是假命题由此可知,q1真,q2假,q3假,q4真故选C6(5分)(2010宁夏)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为()A100B200C300D400【分析】首先分析题目已知某种种子每粒发芽的概

11、率都为0.9,现播种了1000粒,即不发芽率为0.1,故没有发芽的种子数听从二项分布,即B(1000,0.1)又没发芽的补种2个,故补种的种子数记为X=2,依据二项分布的期望公式即可求出结果【解答】解:由题意可知播种了1000粒,没有发芽的种子数听从二项分布,即B(1000,0.1)而每粒需再补种2粒,补种的种子数记为X故X=2,则EX=2E=210000.1=200故选B7(5分)(2010新课标)假如执行右面的框图,输入N=5,则输出的数等于()ABCD【分析】分析程序中各变量、各语句的作用,再依据流程图所示的依次,可知:该程序的作用是累加并输出S=的值【解答】解:分析程序中各变量、各语句

12、的作用,再依据流程图所示的依次,可知:该程序的作用是累加并输出S=的值S=1=故选D8(5分)(2010新课标)设偶函数f(x)满意f(x)=2x4(x0),则x|f(x2)0=()Ax|x2或x4Bx|x0或x4Cx|x0或x6Dx|x2或x2【分析】由偶函数f(x)满意f(x)=2x4(x0),可得f(x)=f(|x|)=2|x|4,依据偶函数的性质将函数转化为肯定值函数,再求解不等式,可得答案【解答】解:由偶函数f(x)满意f(x)=2x4(x0),可得f(x)=f(|x|)=2|x|4,则f(x2)=f(|x2|)=2|x2|4,要使f(|x2|)0,只需2|x2|40,|x2|2解得

13、x4,或x0应选:B9(5分)(2010宁夏)若,是第三象限的角,则=()ABC2D2【分析】将欲求式中的正切化成正余弦,还要留意条件中的角与待求式中角的差异,留意消退它们之间的不同【解答】解:由,是第三象限的角,可得,则,应选A10(5分)(2010宁夏)设三棱柱的侧棱垂直于底面,全部棱长都为a,顶点都在一个球面上,则该球的外表积为()Aa2BCD5a2【分析】由题意可知上下底面中心连线的中点就是球心,求出球的半径,即可求出球的外表积【解答】解:依据题意条件可知三棱柱是棱长都为a的正三棱柱,上下底面中心连线的中点就是球心,则其外接球的半径为,球的外表积为,故选B11(5分)(2010新课标)

14、已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()A(1,10)B(5,6)C(10,12)D(20,24)【分析】画出函数的图象,依据f(a)=f(b)=f(c),不妨abc,求出abc的范围即可【解答】解:作出函数f(x)的图象如图,不妨设abc,则ab=1,则abc=c(10,12)故选C12(5分)(2010宁夏)已知双曲线E的中心为原点,P(3,0)是E的焦点,过P的直线l与E相交于A,B两点,且AB的中点为N(12,15),则E的方程式为()ABCD【分析】已知条件易得直线l的斜率为1,设双曲线方程,及A,B点坐标代入方程联立相减得x1+x2=

15、24,依据=,可求得a和b的关系,再依据c=3,求得a和b,进而可得答案【解答】解:由已知条件易得直线l的斜率为k=kPN=1,设双曲线方程为,A(x1,y1),B(x2,y2),则有,两式相减并结合x1+x2=24,y1+y2=30得=,从而=1即4b2=5a2,又a2+b2=9,解得a2=4,b2=5,故选B二、填空题(共4小题,每小题5分,满分20分)13(5分)(2010宁夏)设y=f(x)为区间0,1上的连续函数,且恒有0f(x)1,可以用随机模拟方法近似计算积分,先产生两组(每组N个)区间0,1上的匀称随机数x1,x2,xN和y1,y2,yN,由此得到N个点(xi,yi)(i=1,

16、2,N),再数出其中满意yif(xi)(i=1,2,N)的点数N1,那么由随机模拟方案可得积分的近似值为【分析】要求f(x)dx的近似值,利用几何概型求概率,结合点数比即可得【解答】解:由题意可知得,故积分的近似值为故答案为:14(5分)(2010宁夏)正视图为一个三角形的几何体可以是三棱锥、三棱柱、圆锥(其他正确答案同样给分)(写出三种)【分析】三棱锥一个侧面的在正视图为一条线段的情形;圆锥;四棱锥有两个侧面在正视图为线段的情形,即可答复本题【解答】解:正视图为一个三角形的几何体可以是三棱锥、三棱柱(放倒的情形)、圆锥、四棱锥等等故答案为:三棱锥、圆锥、三棱柱15(5分)(2010宁夏)过点

17、A(4,1)的圆C与直线xy=1相切于点B(2,1),则圆C的方程为(x3)2+y2=2【分析】设圆的标准方程,再用过点A(4,1),过B,两点坐标合适方程,圆和直线相切,圆心到直线的间隔 等于半径,求得圆的方程【解答】解:设圆的方程为(xa)2+(yb)2=r2,则,解得,故所求圆的方程为(x3)2+y2=2故答案为:(x3)2+y2=216(5分)(2010宁夏)在ABC中,D为边BC上一点,BD=DC,ADB=120,AD=2,若ADC的面积为,则BAC=60【分析】先依据三角形的面积公式利用ADC的面积求得DC,进而依据三角形ABC的面积求得BD和BC,进而依据余弦定理求得AB最终在三

18、角形ABC中利用余弦定理求得cosBAC,求得BAC的值【解答】解:由ADC的面积为可得解得,则AB2=AD2+BD22ADBDcos120=,则=故BAC=60三、解答题(共8小题,满分90分)17(12分)(2010宁夏)设数列满意a1=2,an+1an=322n1(1)求数列an的通项公式;(2)令bn=nan,求数列bn的前n项和Sn【分析】()由题意得an+1=(an+1an)+(anan1)+(a2a1)+a1=3(22n1+22n3+2)+2=22(n+1)1由此可知数列an的通项公式为an=22n1()由bn=nan=n22n1知Sn=12+223+325+n22n1,由此入手

19、可知答案【解答】解:()由已知,当n1时,an+1=(an+1an)+(anan1)+(a2a1)+a1=3(22n1+22n3+2)+2=3+2=22(n+1)1而a1=2,所以数列an的通项公式为an=22n1()由bn=nan=n22n1知Sn=12+223+325+n22n1从而22Sn=123+225+n22n+1得(122)Sn=2+23+25+22n1n22n+1即18(12分)(2010宁夏)如图,已知四棱锥PABCD的底面为等腰梯形,ABCD,ACBD,垂足为H,PH是四棱锥的高,E为AD中点(1)证明:PEBC(2)若APB=ADB=60,求直线PA与平面PEH所成角的正弦

20、值【分析】以H为原点,HA,HB,HP分别为x,y,z轴,线段HA的长为单位长,建立空间直角坐标系(1)表示,计算,就证明PEBC(2)APB=ADB=60,求出C,P的坐标,再求平面PEH的法向量,求向量,然后求与面PEH的法向量的数量积,可求直线PA与平面PEH所成角的正弦值【解答】解:以H为原点,HA,HB,HP分别为x,y,z轴,线段HA的长为单位长,建立空间直角坐标系如图,则A(1,0,0),B(0,1,0)()设C(m,0,0),P(0,0,n)(m0,n0)则可得因为所以PEBC()由已知条件可得m=,n=1,故C(),设=(x,y,z)为平面PEH的法向量则即因此可以取,由,可

21、得所以直线PA与平面PEH所成角的正弦值为19(12分)(2010新课标)为调查某地区老人是否须要志愿者供应扶植,用简洁随机抽样方法从该地区调查了500位老年人,结果如表: 性别是否须要志愿 男女须要 4030不须要 160270(1)估计该地区老年人中,须要志愿者供应扶植的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否须要志愿者供应扶植与性别有关?(3)依据(2)的结论,能否供应更好的调查方法来估计该地区老年人中,须要志愿扶植的老年人的比例?说明理由附:P(k2k)0.00.0100.001k3.8416.63510.828【分析】(1)由列联表可知调查的500位老年人中有40

22、+30=70位须要志愿者供应扶植,两个数据求比值得到该地区老年人中须要扶植的老年人的比例的估算值(2)依据列联表所给的数据,代入随机变量的观测值公式,得到观测值的结果,把观测值的结果与临界值进展比拟,看出有多大把握说该地区的老年人是否须要扶植与性别有关(3)从样本数据老年人中须要扶植的比例有明显差异,调查时,可以先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采纳分层抽样方法比采纳简洁随机抽样方法更好【解答】解:(1)调查的500位老年人中有40+30=70位须要志愿者供应扶植,该地区老年人中须要扶植的老年人的比例的估算值为(2)依据列联表所给的数据,代入随机变量的观测值公式,9.

23、9676.635,有99%的把握认为该地区的老年人是否须要扶植与性别有关(3)由(2)的结论知,该地区老年人是否须要扶植与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中须要扶植的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采纳分层抽样方法比采纳简洁随机抽样方法更好20(12分)(2010宁夏)设F1,F2分别是椭圆的左、右焦点,过F1斜率为1的直线与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列(1)求E的离心率;(2)设点P(0,1)满意|PA|=|PB|,求E的方程【分析】(I)依据椭圆的定义可知|AF2|+|B

24、F2|+|AB|=4a,进而依据|AF2|,|AB|,|BF2|成等差数表示出|AB|,进而可知直线l的方程,设A(x1,y1),B(x2,y2),代入直线和椭圆方程,联立消去y,依据韦达定理表示出x1+x2和x1x2进而依据,求得a和b的关系,进而求得a和c的关系,离心率可得(II)设AB的中点为N(x0,y0),依据(1)则可分别表示出x0和y0,依据|PA|=|PB|,推知直线PN的斜率,依据求得c,进而求得a和b,椭圆的方程可得【解答】解:(I)由椭圆定义知|AF2|+|BF2|+|AB|=4a,又2|AB|=|AF2|+|BF2|,得,l的方程为y=x+c,其中设A(x1,y1),B

25、(x2,y2),则A、B两点坐标满意方程组化简的(a2+b2)x2+2a2cx+a2(c2b2)=0则因为直线AB斜率为1,|AB|=|x1x2|=,得,故a2=2b2所以E的离心率(II)设AB的中点为N(x0,y0),由(I)知,由|PA|=|PB|,得kPN=1,即得c=3,从而故椭圆E的方程为21(12分)(2010宁夏)设函数f(x)=ex1xax2(1)若a=0,求f(x)的单调区间;(2)若当x0时f(x)0,求a的取值范围【分析】(1)先对函数f(x)求导,导函数大于0时原函数单调递增,导函数小于0时原函数单调递减(2)依据ex1+x可得不等式f(x)x2ax=(12a)x,从

26、而可知当12a0,即时,f(x)0推断出函数f(x)的单调性,得到答案【解答】解:(1)a=0时,f(x)=ex1x,f(x)=ex1当x(,0)时,f(x)0;当x(0,+)时,f(x)0故f(x)在(,0)单调削减,在(0,+)单调增加(II)f(x)=ex12ax由(I)知ex1+x,当且仅当x=0时等号成立故f(x)x2ax=(12a)x,从而当12a0,即时,f(x)0(x0),而f(0)=0,于是当x0时,f(x)0由ex1+x(x0)可得ex1x(x0)从而当时,f(x)ex1+2a(ex1)=ex(ex1)(ex2a),故当x(0,ln2a)时,f(x)0,而f(0)=0,于是

27、当x(0,ln2a)时,f(x)0综合得a的取值范围为22(10分)(2010新课标)如图:已知圆上的弧,过C点的圆的切线与BA的延长线交于E点,证明:()ACE=BCD()BC2=BECD【分析】(I)先依据题中条件:“”,得BCD=ABC再依据EC是圆的切线,得到ACE=ABC,从而即可得出结论(II)欲证BC2=BE x CD即证故只须证明BDCECB即可【解答】解:()因为,所以BCD=ABC又因为EC与圆相切于点C,故ACE=ABC所以ACE=BCD(5分)()因为ECB=CDB,EBC=BCD,所以BDCECB,故即BC2=BECD(10分)23(10分)(2010新课标)已知直线

28、C1(t为参数),C2(为参数),()当=时,求C1与C2的交点坐标;()过坐标原点O做C1的垂线,垂足为A,P为OA中点,当改变时,求P点的轨迹的参数方程,并指出它是什么曲线【分析】(I)先消去参数将曲线C1与C2的参数方程化成一般方程,再联立方程组求出交点坐标即可,(II)设P(x,y),利用中点坐标公式得P点轨迹的参数方程,消去参数即得一般方程,由一般方程即可看出其是什么类型的曲线【解答】解:()当=时,C1的一般方程为,C2的一般方程为x2+y2=1联立方程组,解得C1与C2的交点为(1,0)()C1的一般方程为xsinycossin=0则OA的方程为xcos+ysin=0,联立可得x

29、=sin2,y=cossin;A点坐标为(sin2,cossin),故当改变时,P点轨迹的参数方程为:,P点轨迹的一般方程故P点轨迹是圆心为,半径为的圆24(10分)(2010新课标)设函数f(x)=|2x4|+1()画出函数y=f(x)的图象:()若不等式f(x)ax的解集非空,求a的取值范围【分析】(I)先探讨x的范围,将函数f(x)写成分段函数,然后依据分段函数分段画出函数的图象即可;(II)依据函数y=f(x)与函数y=ax的图象可知先找寻满意f(x)ax的零界状况,从而求出a的范围【解答】解:()由于f(x)=,函数y=f(x)的图象如图所示()由函数y=f(x)与函数y=ax的图象可知,微小值在点(2,1)当且仅当a2或a时,函数y=f(x)与函数y=ax的图象有交点故不等式f(x)ax的解集非空时,a的取值范围为(,2),+)参加本试卷答题和审题的教师有:minqi5;qiss;yhx01248;caoqz;xiaolizi;豫汝王世崇;lily2011;wsj1012;xiexie;zhwsd;zlzhan;涨停(排名不分先后)菁优网2017年2月3日

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 初中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁